Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5517-5526.DOI: 10.16085/j.issn.1000-6613.2024-0476
• Industrial catalysis • Previous Articles
HONG Xuesi1,2(), WU Xing1, SONG Lei1, MIAO Changxi1, YANG Weimin1,2()
Received:
2024-03-22
Revised:
2024-05-05
Online:
2024-10-29
Published:
2024-10-15
Contact:
YANG Weimin
洪学思1,2(), 吴省1, 宋磊1, 缪长喜1, 杨为民1,2()
通讯作者:
杨为民
作者简介:
洪学思(1989—),男,博士研究生,研究方向为工业催化。E-mail:hongxs.sshy@sinopec.com。
CLC Number:
HONG Xuesi, WU Xing, SONG Lei, MIAO Changxi, YANG Weimin. Review on zeolite confined catalysts for propane dehydrogenation[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5517-5526.
洪学思, 吴省, 宋磊, 缪长喜, 杨为民. 分子筛限域丙烷脱氢催化剂的研究进展[J]. 化工进展, 2024, 43(10): 5517-5526.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0476
催化剂 | 反应温度/℃ | 原料组成 | 质量空速/h-1 | 转化率/% | 选择性/% | 反应时间/h | 参考文献 |
---|---|---|---|---|---|---|---|
CrO x /Al2O3 | 575~590 | 工业级丙烷 | — | 45 | 91.9 | 生产周期 | [ |
Pt-Sn/Al2O3 | 580~640 | 工业级丙烷 | — | 35 | 90.7 | 生产周期 | [ |
0.72%Pt1.0%Zn@S-1-H | 550 | C3H8/N2=1/3 | 3.6 | 47.4~40.4 | 93.2~99.2 | 216.7 | [ |
0.45%Pt/1.10%Zn@S-1-Fin | 600 | C3H8 | 12 | 48.3~44.9 | 97.1~96.9 | 80 | [ |
0.19%Pt/2.56%Zn-SPP | 550 | C3H8/He=1:3 | 1350 | 42.5 | >99 | 288 | [ |
0.2%Pt/1.4%Sn@S-1 | 550 | C3H8/N2=1/3 | 3.6 | 35~45 | 97~99 | 300 | [ |
0.26%Pt/0.47%Sn-Si-Beta | 550 | C3H8/N2=1/19 | 1 | 25.2~27.5 | 99.1~99.9 | 24 | [ |
0.092%Pt/0.82%Ga@S-1 | 600 | C3H8/N2=1/19 | 0.65 | 41.5~45.9 | 92~95 | 24 | [ |
0.35%Rh/1.93%In@S-1 | 550 | C3H8 | 8 | 23~25 | 99 | 5500 | [ |
3.28%Zn@MFI-P | 580 | C3H8 | 7.85 | 25~34 | 95 | 4 | [ |
0.98%Co@S-1 | 590 | C3H8/H2/N2=5/4/5 | 3.7 | 30~35 | 93 | 12 | [ |
1.728%Fe/H-ZKD-1 | 600 | C3H8/N2=1/24 | 19.8 | 22.63 | 96 | 12 | [ |
催化剂 | 反应温度/℃ | 原料组成 | 质量空速/h-1 | 转化率/% | 选择性/% | 反应时间/h | 参考文献 |
---|---|---|---|---|---|---|---|
CrO x /Al2O3 | 575~590 | 工业级丙烷 | — | 45 | 91.9 | 生产周期 | [ |
Pt-Sn/Al2O3 | 580~640 | 工业级丙烷 | — | 35 | 90.7 | 生产周期 | [ |
0.72%Pt1.0%Zn@S-1-H | 550 | C3H8/N2=1/3 | 3.6 | 47.4~40.4 | 93.2~99.2 | 216.7 | [ |
0.45%Pt/1.10%Zn@S-1-Fin | 600 | C3H8 | 12 | 48.3~44.9 | 97.1~96.9 | 80 | [ |
0.19%Pt/2.56%Zn-SPP | 550 | C3H8/He=1:3 | 1350 | 42.5 | >99 | 288 | [ |
0.2%Pt/1.4%Sn@S-1 | 550 | C3H8/N2=1/3 | 3.6 | 35~45 | 97~99 | 300 | [ |
0.26%Pt/0.47%Sn-Si-Beta | 550 | C3H8/N2=1/19 | 1 | 25.2~27.5 | 99.1~99.9 | 24 | [ |
0.092%Pt/0.82%Ga@S-1 | 600 | C3H8/N2=1/19 | 0.65 | 41.5~45.9 | 92~95 | 24 | [ |
0.35%Rh/1.93%In@S-1 | 550 | C3H8 | 8 | 23~25 | 99 | 5500 | [ |
3.28%Zn@MFI-P | 580 | C3H8 | 7.85 | 25~34 | 95 | 4 | [ |
0.98%Co@S-1 | 590 | C3H8/H2/N2=5/4/5 | 3.7 | 30~35 | 93 | 12 | [ |
1.728%Fe/H-ZKD-1 | 600 | C3H8/N2=1/24 | 19.8 | 22.63 | 96 | 12 | [ |
分类 | 技术方案 | 参考文献 |
---|---|---|
前处理 | 配体保护法 | [ |
多模板剂法 | [ | |
后处理 | 浸渍法 | [ |
脱铝处理法 | [ | |
固相研磨法 | [ | |
重结晶法 | [ |
分类 | 技术方案 | 参考文献 |
---|---|---|
前处理 | 配体保护法 | [ |
多模板剂法 | [ | |
后处理 | 浸渍法 | [ |
脱铝处理法 | [ | |
固相研磨法 | [ | |
重结晶法 | [ |
1 | 余长林, 葛庆杰, 徐恒泳, 等. 丙烷脱氢制丙烯研究新进展[J]. 化工进展, 2006, 25(9): 977-982. |
YU Changlin, GE Qingjie, XU Hengyong, et al. New development of dehydrogenation of propane to propylene[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 977-982. | |
2 | 徐志康, 黄佳露, 王廷海, 等. 丙烷脱氢制丙烯催化剂的研究进展[J]. 化工进展, 2021, 40(4): 1893-1916. |
XU Zhikang, HUANG Jialu, WANG Tinghai, et al. Advances in catalysts for propane dehydrogenation to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1893-1916. | |
3 | 吴建国, 吴登峰, 程道建. 丙烷脱氢制丙烯用单原子催化剂研究进展[J]. 化工进展, 2021, 40(12): 6688-6695. |
WU Jianguo, WU Dengfeng, CHENG Daojian. Advances in single-atom catalysts for dehydrogenation of propane to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6688-6695. | |
4 | DEROUANE Eric G, Jean-Marie ANDRÉ, LUCAS Amand A. A simple van der waals model for molecule-curved surface interactions in molecular-sized microporous solids[J]. Chemical Physics Letters, 1987, 137(4): 336-340. |
5 | WU Siming, YANG Xiaoyu, JANIAK Christoph. Confinement effects in zeolite-confined noble metals[J]. Angewandte Chemie International Edition, 2019, 58(36): 12340-12354. |
6 | LIU Lichen, CORMA Avelino. Confining isolated atoms and clusters in crystalline porous materials for catalysis[J]. Nature Reviews Materials, 2021, 6: 244-263. |
7 | 马文明. 丙烷脱氢制丙烯技术研究进展[J]. 现代化工, 2023, 43(5): 20-24, 30. |
MA Wenming. Advances on propane dehydrogenation to propylene processes[J]. Modern Chemical Industry, 2023, 43(5): 20-24, 30. | |
8 | LI Chunyi, WANG Guowei. Dehydrogenation of light alkanes to mono-olefins[J]. Chemical Society Reviews, 2021, 50(7): 4359-4381. |
9 | OBENAUS Uts, NEHER Felix, SCHEIBE Matthias, et al. Relationships between the hydrogenation and dehydrogenation properties of Rh-, Ir-, Pd-, and Pt-containing zeolites Y studied by in situ MAS NMR spectroscopy and conventional heterogeneous catalysis[J]. The Journal of Physical Chemistry C, 2016, 120(4): 2284-2291. |
10 | SONG Shaojia, SUN Yuanqing, YANG Kun, et al. Recent progress in metal-molecular sieve catalysts for propane dehydrogenation[J]. ACS Catalysis, 2023, 13(9): 6044-6067. |
11 | LIU Lichen, Urbano DÍAZ, ARENAL Raul, et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(1): 132-138. |
12 | SUN Qiming, WANG Ning, FAN Qiyuan, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie (International Ed in English), 2020, 59(44): 19450-19459. |
13 | ZHANG Bofeng, LI Guozhu, ZHAI Ziwei, et al. PtZn intermetallic nanoalloy encapsulated in silicalite-1 for propane dehydrogenation[J]. AIChE Journal, 2021, 67(7): e17295. |
14 | ZHANG Bofeng, LI Guozhu, LIU Sibao, et al. Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier[J]. ACS Catalysis, 2022, 12(2): 1310-1314. |
15 | WANG Ning, SUN Qiming, ZHANG Tianjun, et al. Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets[J]. Journal of the American Chemical Society, 2021, 143(18): 6905-6914. |
16 | QI Liang, ZHANG Yanfei, BABUCCI Melike, et al. Dehydrogenation of propane and n-butane catalyzed by isolated PtZn4 sites supported on self-pillared zeolite pentasil nanosheets[J]. ACS Catalysis, 2022, 12(18): 11177-11189. |
17 | SONG Mingxia, ZHANG Bofeng, ZHAI Ziwei, et al. Highly dispersed Pt stabilized by ZnO x -Si on self-pillared zeolite nanosheets for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2023, 62(9): 3853-3861. |
18 | XIE Linjun, CHAI Yuchao, SUN Lanlan, et al. Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation[J]. Journal of Energy Chemistry, 2021, 57: 92-98. |
19 | WEI Xueer, CHENG Jiawei, LI Yubing, et al. Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation[J]. Nano Research, 2023, 16(8): 10881-10889. |
20 | SATTLER Aaron, PACCAGNINI Michele, LIU Lichen, et al. Assessment of metal-metal interactions and catalytic behavior in platinum-tin bimetallic subnanometric clusters by using reactive characterizations[J]. Journal of Catalysis, 2021, 404: 393-399. |
21 | ZHU Jie, OSUGA Ryota, ISHIKAWA Ryo, et al. Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: Catalytic application for propane dehydrogenation[J]. Angewandte Chemie (International Ed in English), 2020, 59(44): 19669-19674. |
22 | WANG Yansu, HU Zhongpan, TIAN Wenwen, et al. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability[J]. Catalysis Science & Technology, 2019, 9(24): 6993-7002. |
23 | HE Yongsheng, DENG Huihui, ZHANG Ying, et al. Boosting propane dehydrogenation over Sn stabilizing dispersed Pt δ + confined in Silicalite-1 at low temperature[J]. Fuel, 2023, 352: 129044. |
24 | MA Yue, CHEN Xiao, GUAN Yejun, et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology[J]. Journal of Catalysis, 2021, 397: 44-57. |
25 | CHEN Yong, ZHU Xiaoxiao, WANG Xinping, et al. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite[J]. Chemical Engineering Journal, 2021, 419: 129641. |
26 | WANG Tianlei, XU Zhikang, YUE Yuanyuan, et al. Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation[J]. Chinese Journal of Chemical Engineering, 2022, 41: 384-391. |
27 | ZHOU Jie, ZHANG Ying, LIU Hao, et al. Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite[J]. Nano Research, 2023, 16(5): 6537-6543. |
28 | WANG Yansu, SUO Yujun, Xianwei LYU, et al. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation[J]. Journal of Colloid and Interface Science, 2021, 593: 304-314. |
29 | ZHOU Jie, LIU Hao, XIONG Chao, et al. Potassium-promoted Pt-In bimetallic clusters encapsulated in silicalite-1 zeolite for efficient propane dehydrogenation[J]. Chemical Engineering Journal, 2023, 455: 139794. |
30 | BIAN Kai, ZHANG Guanghui, WANG Mingrui, et al. Promoting propane dehydrogenation over PtFe bimetallic catalysts by optimizing the state of Fe species[J]. Chemical Engineering Science, 2023, 275: 118748. |
31 | LIU Hao, ZHOU Jie, CHEN Tianxiang, et al. Isolated Pt species anchored by hierarchical-like heteroatomic Fe-silicalite-1 catalyze propane dehydrogenation near the thermodynamic limit[J]. ACS Catalysis, 2023, 13(5): 2928-2936. |
32 | MA Yue, SONG Shaojia, LIU Changcheng, et al. Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation[J]. Nature Catalysis, 2023, 6: 506-518. |
33 | WANG Peng, LIAO Huafei, YANG Hua, et al. Constructing PtCe cluster catalysts by regulating metal-support interaction via Al in zeolite for propane dehydrogenation[J]. Chemical Engineering Science, 2023, 269: 118450. |
34 | RAMAN Narayanan, MAISEL Sven, GRABAU Mathias, et al. Highly effective propane dehydrogenation using Ga-Rh supported catalytically active liquid metal solutions[J]. ACS Catalysis, 2019, 9(10): 9499-9507. |
35 | ZENG Lei, CHENG Kang, SUN Fanfei, et al. Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts[J]. Science, 2024, 383(6686): 998-1004. |
36 | XIE Linjun, WANG Rui, CHAI Yuchao, et al. Propane dehydrogenation catalyzed by in-situ partially reduced zinc cations confined in zeolites[J]. Journal of Energy Chemistry, 2021, 30(12): 262-269, I0006. |
37 | SONG Shaojia, YANG Kun, ZHANG Peng, et al. Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenation[J]. ACS Catalysis, 2022, 12(10): 5997-6006. |
38 | LIU Xiangqi, Xintong LYU, SONG Weiyu, et al. Regioselective distribution of zinc hydroxyl within straight channels in MFI zeolite nanosheets for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 121-129. |
39 | SU Xunming, HU Zhongpan, HAN Jingfeng, et al. Biomolecule-inspired synthesis of framework zinc in MFI zeolite for propane dehydrogenation[J]. Microporous and Mesoporous Materials, 2023, 348: 112371. |
40 | YUAN Yong, LOBO Raul F. Zinc speciation and propane dehydrogenation in Zn/H-ZSM-5 catalysts[J]. ACS Catalysis, 2023, 13(7): 4971-4984. |
41 | ZHANG Lichen, MA Xiaosen, ZHENG Jiajun, et al. Active Zn species nest in dealumination zeolite composite for propane dehydrogenation[J]. Catalysis Letters, 2023, 153(11): 3466-3479. |
42 | WU Lizhi, REN Zhuangzhuang, HE Yongsheng, et al. Atomically dispersed Co2+ sites incorporated into a silicalite-1 zeolite framework as a high-performance and coking-resistant catalyst for propane nonoxidative dehydrogenation to propylene[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48934-48948. |
43 | SONG Shaojia, LI Jun, WU Zhijie, et al. In situ encapsulated subnanometric CoO clusters within silicalite-1 zeolite for efficient propane dehydrogenation[J]. AIChE Journal, 2022, 68(2): e17451. |
44 | HU Zhongpan, QIN Gangqiang, HAN Jingfeng, et al. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation[J]. Journal of the American Chemical Society, 2022, 144(27): 12127-12137. |
45 | LV Xintong, YANG Min, SONG Shaojia, et al. Boosting propane dehydrogenation by the regioselective distribution of subnanometric CoO clusters in MFI zeolite nanosheets[J]. ACS Applied Materials & Interfaces, 2023: 14250-14260. |
46 | LONG Jiangping, TIAN Suyang, WEI Sheng, et al. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites[J]. Applied Surface Science, 2023, 614: 156238. |
47 | GAO Yating, PENG Lilin, LONG Jiangping, et al. Hydrogen pre-reduction determined Co-silica interaction and performance of cobalt catalysts for propane dehydrogenation[J]. Microporous and Mesoporous Materials, 2021, 323: 111187. |
48 | 贾育红, 胡忠攀, 王坤院, 等. S-1分子筛羟基窝锚定钴用于丙烷脱氢制丙烯[J]. 无机盐工业, 2023, 55(5): 121-127. |
JIA Yuhong, HU Zhongpan, WANG Kunyuan, et al. Co anchored on silanol nests of S-1 zeolite for propane dehydrogenation to propylene[J]. Inorganic Chemicals Industry, 2023, 55(5): 121-127. | |
49 | XU Guangyue, ZHANG Xiang, DONG Zhuoya, et al. Ferric single-site catalyst confined in a zeolite framework for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2023, 62(44): e202305915. |
50 | SU Xunming, HU Zhongpan, HAN Jingfeng, et al. Selective incorporation of iron sites into MFI zeolite framework by one-pot synthesis[J]. Crystal Growth & Design, 2023, 23(4): 2644-2651. |
51 | NAKAI Masahiro, MIYAKE Koji, INOUE Reina, et al. Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta)[J]. Catalysis Science & Technology, 2019, 9(22): 6234-6239. |
52 | YUAN Yong, LOBO Raul F, XU Bingjun. Ga2O2 2+ stabilized by paired framework Al atoms in MFI: A highly reactive site in nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(3): 1775-1783. |
53 | YUAN Yong, LEE Jason S, LOBO Raul F. Ga+-chabazite zeolite: A highly selective catalyst for nonoxidative propane dehydrogenation[J]. Journal of the American Chemical Society, 2022, 144(33): 15079-15092. |
54 | YUAN Yong, LOBO Raul F. Propane dehydrogenation over extra-framework In(i) in chabazite zeolites[J]. Chemical Science, 2022, 13(10): 2954-2964. |
55 | HUANG Chengming, HAN Dingmei, GUAN Linjie, et al. Bimetallic Ni-Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation[J]. Fuel, 2022, 307: 121790. |
[1] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[2] | ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392. |
[3] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
[4] | ZHOU Hao, WANG Xurui, ZHAO Huishuang, WEN Nini, SU Yaxin. Selective catalytic reduction of nitric oxide with propylene over CuCe-SAPO-34 catalysts under diesel engine exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3093-3099. |
[5] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[6] | ZENG Haojie, ZHOU Mei, ZOU Zhenyuan, XIONG Feng, ZENG Xingxing, LIU Baoyu. Preparation of surface passivated 2D ZSM-5 zeolites and their performance in toluene and methanol alkylation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2696-2704. |
[7] | ZHANG Guoqing, SONG Shubo, WANG Xingrui, GONG Miaomiao, WANG Xu, XU Yuhong, FENG Jiyue, ZHANG Fuyang, CHEN Huiyong. Recent advances in the synthesis and application of zeolites from coal-based solid wastes [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2311-2323. |
[8] | DUAN Xiang, TIAN Ye, DONG Wenwei, SONG Song, LI Xingang. Research progress on reaction networks and catalytic reaction mechanisms of phthalic anhydride synthesis [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2587-2599. |
[9] | WANG Mengyu, FAN Hongxia, LIANG Changhai, LI Wenying. Influence of zeolite confinement effect on its acidic characterization and catalytic performance [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2600-2610. |
[10] | XIE Xiaojin, ZHANG Xiaoxue, LIU Xiaoling, CHONG Mingben, CHENG Dangguo, CHEN Fengqiu. Effect of acidic properties of single-crystalline hierarchical ZSM-5 zeolite on its activity and mass transfer in n-heptane catalytic cracking [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2661-2672. |
[11] | LIANG Yanyan, ZHANG Junliang, GUO Yunya, ZHANG Yanting. The role of seed in the synthesis of molecular sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1275-1292. |
[12] | WANG Xiong, KANG Wenqian, REN Yue, QIAO Tongsen, ZHANG Peng, HUANG Anping, LI Guangquan. Pilot scale production of porous organic polymers and their application in polyolefin catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1412-1417. |
[13] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[14] | WANG Yiyan, WANG Darui, SHEN Zhenhao, HE Junlin, SUN Hongmin, YANG Weimin. Preparation and catalytic performance of fully crystalline MCM-22 zeolite catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 285-291. |
[15] | ZHANG Haipeng, WANG Shuzhen, MA Mengxi, ZHANG Wei, XIANG Jiangnan, WANG Yuting, WANG Yan, FAN Binbin, ZHENG Jiajun, LI Ruifeng. Synthesis of ZSM-22 molecular sieve and its n-dodecane hydroisomerization performance: Effect of template agent and dynamic crystallization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 414-421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |