Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5486-5497.DOI: 10.16085/j.issn.1000-6613.2023-1639
• Industrial catalysis • Previous Articles
LI Yongheng(), WANG Wenbo, XIN Jing, WU Chongchong, SU Mengjun, YANG Guoming
Received:
2023-09-15
Revised:
2024-02-02
Online:
2024-10-29
Published:
2024-10-15
Contact:
LI Yongheng
通讯作者:
李永恒
作者简介:
李永恒(1989—),男,博士,工程师,研究方向为碳资源化学利用。E-mail:liyh90@cnooc.com.cn。
基金资助:
CLC Number:
LI Yongheng, WANG Wenbo, XIN Jing, WU Chongchong, SU Mengjun, YANG Guoming. Research progress of carbon based single atom catalysts for electrocatalytic reduction of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5486-5497.
李永恒, 王文波, 辛靖, 吴冲冲, 苏梦军, 杨国明. 碳基单原子催化剂在电催化二氧化碳还原中的研究进展[J]. 化工进展, 2024, 43(10): 5486-5497.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1639
反应路径 | 反应平衡电位(vs. RHE)/V | 产物 |
---|---|---|
-0.1 | 一氧化碳(CO) | |
+0.03 | 甲醇(CH3OH) | |
-0.12 | 甲酸(HCOOH) | |
+0.17 | 甲烷(CH4) | |
+0.08 | 乙烯(C2H4) | |
+0.11 | 乙酸(CH3COOH) | |
+0.06 | 乙醛(CH3CHO) | |
+0.09 | 乙醇(C2H5OH) | |
+0.14 | 乙烷(C2H6) | |
+0.1 | 丙醇(C3H7OH) |
反应路径 | 反应平衡电位(vs. RHE)/V | 产物 |
---|---|---|
-0.1 | 一氧化碳(CO) | |
+0.03 | 甲醇(CH3OH) | |
-0.12 | 甲酸(HCOOH) | |
+0.17 | 甲烷(CH4) | |
+0.08 | 乙烯(C2H4) | |
+0.11 | 乙酸(CH3COOH) | |
+0.06 | 乙醛(CH3CHO) | |
+0.09 | 乙醇(C2H5OH) | |
+0.14 | 乙烷(C2H6) | |
+0.1 | 丙醇(C3H7OH) |
催化剂 | 电解液 | 产物 | 电压(vs. RHE) /V | 法拉第效率 /% | 最大电流密度 /mA∙cm-2 | 稳定性 /h | 转化频率 /h-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Fe-SA/ZIF | 0.1mol/L KHCO3 | CO | -1.0~-0.4 | 98 | 18 | 40 | — | [ |
FeN4Cl/NC | 0.5mol/L KHCO3 | CO | -0.7~-0.3 | 90.5 | 40 | 18 | 1566 | [ |
Fe-N/P-C | 0.5mol/L KHCO3 | CO | -0.7~-0.4(>90%) | 98 | 20 | 24 | 508.8 | [ |
FeN4/石墨烯边缘 | 0.1mol/L KHCO3 | CO | -0.6~-0.4 | 94 | — | 9 | 1630 | [ |
Fe2—N-C | 0.5mol/L KHCO3 | CO | -0.9~-0.5 | 80 | 45 | 20 | 26,637 | [ |
Fe-n-f-CNTs(碳纳米管) | 0.5mol/L KHCO3 | CH3CH2OH | -1.2~-0.6 | 45 | 60 | — | — | [ |
Cu SAs/NC | 0.1mol/L KHCO3 | CO | -0.9~-0.5(>70%) | 92 | 8.9 | 30 | — | [ |
Cu—N4—C/1100 | 0.1mol/L KHCO3 | CO | -1.1~-0.6(>90%) | 98 | 14 | 40 | 1012 | [ |
2Bn-Cu@UiO-67 | 1.0mol/L KOH | CH4 | -1.6~-1.1(>70%) | 81 | 420 | — | 58680 | [ |
Cu-C(石墨炔) | 0.1mol/L KHCO3 | CH4 | — | 66 | 40 | 10 | 2311 | [ |
CuSAs/TCNFs (贯通孔碳纳米纤维) | 0.1mol/L KHCO3 | CH3OH | -0.9~-0.4 | 44 | 93 | 50 | — | [ |
Cu3(2,3,7,8,12, B-六羟基三环喹唑啉)2 | 0.1mol/L KHCO3 | CH3OH | -0.8~-0.2 | 53.6 | 45 | — | — | [ |
CuNi-DSA(双单原子)/ CNFs(碳纳米纤维) | 0.1mol/L KHCO3 | CO | -1.18~-0.78 | 99.60 | 42 | 25 | 2870 | [ |
Cu/C | 0.1mol/L KHCO3 | CH3CH2OH | -1.2~-0.4 | 91 | 25 | 16 | — | [ |
Cu-SA/NPC(氮磷共掺杂碳) | 0.1mol/L KHCO3 | CH3COCH3 | -0.96~-0.16 | 36.7 | 15 | — | — | [ |
Ni-SAs-NC | 0.5mol/L KHCO3 | CO | -1.0~-0.6(>90%) | 98 | 31 | 30 | — | [ |
MeNiPc(甲酯化酞菁镍)/ (石墨烯) | 0.5mol/L KHCO3 | CO | -0.93~-0.58(>90%) | 99.40 | 28 | 12 | 8310 | [ |
Ni-N-MEGO | 0.5mol/L KHCO3 | CO | -0.7~-0.55(>90%) | 92.10 | 28.6 | 21 | 864 | [ |
Ni-SAs@BNC | 0.5mol/L KHCO3 | CO | -1.2~-0.6(>97%) | 99 | 67.91 | 40 | — | [ |
SACs Co—N2C3 | 0.1mol/L KHCO3 | CO | -1.1~-0.4(>90%) | 92 | 8.3 | 40 | 1451 | [ |
CoSA/HCNFs (非自支撑碳纳米纤维) | 0.1mol/L KHCO3 | CO | -0.9~-0.4(>90%) | 97 | 67 | 50 | — | [ |
Co-HNC(空心氮掺杂碳) | 0.1mol/L KHCO3 | 合成气 | -1.0~-0.7 | 100 | — | 24 | — | [ |
CoPc(酞菁钴)/石墨烯 | 0.5mol/L KHCO3 | CO | -1.6~-0.6 | 85.40 | — | 30 | — | [ |
CoPc/MWCNT(多壁碳纳米管) | 0.5mol/L K2HPO4 | CH3OH | — | 65 | 100 | 8 | — | [ |
CoPor-N3/CNTs | 0.1mol/L KHCO3 | CO | -0.7~-0.35(>46%) | 96 | 20.3 | 24 | 550 | [ |
COF@CoPor | 0.5mol/L KHCO3 | CO | -1.0~-0.5(>84.2%) | 73.8 | 12.5 | 10 | 4578 | [ |
SACs Co-ZIF | 0.5mol/L KHCO3 | CO | -0.7~-0.5(>45%) | 60 | 12 | 10 | — | [ |
2D-Co-COF500 | 0.5mol/L KHCO3 | CO | -1.0~-0.5(>80.2%) | 96.50 | 17.9 | 15 | 336 | [ |
CoN4/石墨烯 | 0.1mol/L KHCO3 | CO | -0.96~-0.26 | 95 | 19 | 15 | — | [ |
Co—N5/HNPCSs (空心氮掺杂多孔碳球) | 0.2mol/L NaHCO3 | CO | -0.88~-0.57(>90%) | 99 | 17.5 | 10 | 480.2 | [ |
Sb SA/NC | 0.5mol/L KHCO3 | HCOOH | -1.0~-0.7 | 94 | 25 | 10 | — | [ |
Pd2 DAC(双原子催化剂) | 0.5mol/L KHCO3 | CO | -0.9~-0.7 | 98.20 | 38 | 12 | — | [ |
Bi SA | 0.5mol/L KHCO3 | CO | -1.2~-0.8 | >90 | 29.3 | 40 | 9504 | [ |
Bi SAs/NC | 0.1mol/L NaHCO3 | CO | -0.625~-0.375 | 97 | — | — | 10118 | [ |
Cd-NC SACs | 0.5mol/L KHCO3 | CO | -0.90~-0.65 | 91.40 | 17.5 | 10 | — | [ |
Ga—N3S-PC | 0.5mol/L KHCO3 | CO | -0.30~-0.20 | 92 | 175 | 24 | — | [ |
SnPc(酞菁锡)/CNT-OH | 1mol/L KOH | HCOOH | -1.2~-0.7 | 89.40 | 135 | 9 | — | [ |
ZnN4S1/P-HC(空心碳) | 0.1mol/L KHCO3 | CO | -0.9~-0.4 | 约100 | 35 | 30 | 1241 | [ |
InCe/CN | 0.1mol/L KHCO3 | HCOOH | -1.4~-1.2 | 77 | — | 6 | — | [ |
催化剂 | 电解液 | 产物 | 电压(vs. RHE) /V | 法拉第效率 /% | 最大电流密度 /mA∙cm-2 | 稳定性 /h | 转化频率 /h-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Fe-SA/ZIF | 0.1mol/L KHCO3 | CO | -1.0~-0.4 | 98 | 18 | 40 | — | [ |
FeN4Cl/NC | 0.5mol/L KHCO3 | CO | -0.7~-0.3 | 90.5 | 40 | 18 | 1566 | [ |
Fe-N/P-C | 0.5mol/L KHCO3 | CO | -0.7~-0.4(>90%) | 98 | 20 | 24 | 508.8 | [ |
FeN4/石墨烯边缘 | 0.1mol/L KHCO3 | CO | -0.6~-0.4 | 94 | — | 9 | 1630 | [ |
Fe2—N-C | 0.5mol/L KHCO3 | CO | -0.9~-0.5 | 80 | 45 | 20 | 26,637 | [ |
Fe-n-f-CNTs(碳纳米管) | 0.5mol/L KHCO3 | CH3CH2OH | -1.2~-0.6 | 45 | 60 | — | — | [ |
Cu SAs/NC | 0.1mol/L KHCO3 | CO | -0.9~-0.5(>70%) | 92 | 8.9 | 30 | — | [ |
Cu—N4—C/1100 | 0.1mol/L KHCO3 | CO | -1.1~-0.6(>90%) | 98 | 14 | 40 | 1012 | [ |
2Bn-Cu@UiO-67 | 1.0mol/L KOH | CH4 | -1.6~-1.1(>70%) | 81 | 420 | — | 58680 | [ |
Cu-C(石墨炔) | 0.1mol/L KHCO3 | CH4 | — | 66 | 40 | 10 | 2311 | [ |
CuSAs/TCNFs (贯通孔碳纳米纤维) | 0.1mol/L KHCO3 | CH3OH | -0.9~-0.4 | 44 | 93 | 50 | — | [ |
Cu3(2,3,7,8,12, B-六羟基三环喹唑啉)2 | 0.1mol/L KHCO3 | CH3OH | -0.8~-0.2 | 53.6 | 45 | — | — | [ |
CuNi-DSA(双单原子)/ CNFs(碳纳米纤维) | 0.1mol/L KHCO3 | CO | -1.18~-0.78 | 99.60 | 42 | 25 | 2870 | [ |
Cu/C | 0.1mol/L KHCO3 | CH3CH2OH | -1.2~-0.4 | 91 | 25 | 16 | — | [ |
Cu-SA/NPC(氮磷共掺杂碳) | 0.1mol/L KHCO3 | CH3COCH3 | -0.96~-0.16 | 36.7 | 15 | — | — | [ |
Ni-SAs-NC | 0.5mol/L KHCO3 | CO | -1.0~-0.6(>90%) | 98 | 31 | 30 | — | [ |
MeNiPc(甲酯化酞菁镍)/ (石墨烯) | 0.5mol/L KHCO3 | CO | -0.93~-0.58(>90%) | 99.40 | 28 | 12 | 8310 | [ |
Ni-N-MEGO | 0.5mol/L KHCO3 | CO | -0.7~-0.55(>90%) | 92.10 | 28.6 | 21 | 864 | [ |
Ni-SAs@BNC | 0.5mol/L KHCO3 | CO | -1.2~-0.6(>97%) | 99 | 67.91 | 40 | — | [ |
SACs Co—N2C3 | 0.1mol/L KHCO3 | CO | -1.1~-0.4(>90%) | 92 | 8.3 | 40 | 1451 | [ |
CoSA/HCNFs (非自支撑碳纳米纤维) | 0.1mol/L KHCO3 | CO | -0.9~-0.4(>90%) | 97 | 67 | 50 | — | [ |
Co-HNC(空心氮掺杂碳) | 0.1mol/L KHCO3 | 合成气 | -1.0~-0.7 | 100 | — | 24 | — | [ |
CoPc(酞菁钴)/石墨烯 | 0.5mol/L KHCO3 | CO | -1.6~-0.6 | 85.40 | — | 30 | — | [ |
CoPc/MWCNT(多壁碳纳米管) | 0.5mol/L K2HPO4 | CH3OH | — | 65 | 100 | 8 | — | [ |
CoPor-N3/CNTs | 0.1mol/L KHCO3 | CO | -0.7~-0.35(>46%) | 96 | 20.3 | 24 | 550 | [ |
COF@CoPor | 0.5mol/L KHCO3 | CO | -1.0~-0.5(>84.2%) | 73.8 | 12.5 | 10 | 4578 | [ |
SACs Co-ZIF | 0.5mol/L KHCO3 | CO | -0.7~-0.5(>45%) | 60 | 12 | 10 | — | [ |
2D-Co-COF500 | 0.5mol/L KHCO3 | CO | -1.0~-0.5(>80.2%) | 96.50 | 17.9 | 15 | 336 | [ |
CoN4/石墨烯 | 0.1mol/L KHCO3 | CO | -0.96~-0.26 | 95 | 19 | 15 | — | [ |
Co—N5/HNPCSs (空心氮掺杂多孔碳球) | 0.2mol/L NaHCO3 | CO | -0.88~-0.57(>90%) | 99 | 17.5 | 10 | 480.2 | [ |
Sb SA/NC | 0.5mol/L KHCO3 | HCOOH | -1.0~-0.7 | 94 | 25 | 10 | — | [ |
Pd2 DAC(双原子催化剂) | 0.5mol/L KHCO3 | CO | -0.9~-0.7 | 98.20 | 38 | 12 | — | [ |
Bi SA | 0.5mol/L KHCO3 | CO | -1.2~-0.8 | >90 | 29.3 | 40 | 9504 | [ |
Bi SAs/NC | 0.1mol/L NaHCO3 | CO | -0.625~-0.375 | 97 | — | — | 10118 | [ |
Cd-NC SACs | 0.5mol/L KHCO3 | CO | -0.90~-0.65 | 91.40 | 17.5 | 10 | — | [ |
Ga—N3S-PC | 0.5mol/L KHCO3 | CO | -0.30~-0.20 | 92 | 175 | 24 | — | [ |
SnPc(酞菁锡)/CNT-OH | 1mol/L KOH | HCOOH | -1.2~-0.7 | 89.40 | 135 | 9 | — | [ |
ZnN4S1/P-HC(空心碳) | 0.1mol/L KHCO3 | CO | -0.9~-0.4 | 约100 | 35 | 30 | 1241 | [ |
InCe/CN | 0.1mol/L KHCO3 | HCOOH | -1.4~-1.2 | 77 | — | 6 | — | [ |
1 | LI Minhan, WANG Haifeng, LUO Wei, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction[J]. Advanced Materials, 2020, 32(34): e2001848. |
2 | LI Xiaoxin, CHAI Guoliang, XU Xiao, et al. Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites[J]. Carbon, 2020, 167: 658-667. |
3 | 赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(S1): 524-535. |
ZHAO Jinbo, BIAN Fengming. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535. | |
4 | ZHANG Zedong, ZHU Jiexin, CHEN Shenghua, et al. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2023, 62(3): e202215136. |
5 | 华亚妮, 冯少广, 党欣悦, 等. CO2电催化还原产合成气研究进展[J]. 化工进展, 2022, 41(3): 1224-1240. |
HUA Yani, FENG Shaoguang, DANG Xinyue, et al. Research progress of CO2 electrocatalytic reduction to syngas[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1224-1240. | |
6 | ZHANG Shilei, YUE Pengtao, ZHOU Yue, et al. Ni single atoms embedded in graphene nanoribbon sieves for high-performance CO2 reduction to CO[J]. Small, 2023, 19(43): e2303016. |
7 | JIANG Liyun, YANG Qingqing, XIA Zhaoming, et al. Recent progress of theoretical studies on electro- and photo-chemical conversion of CO2 with single-atom catalysts[J]. RSC Advances, 2023, 13(9): 5833-5850. |
8 | KOOLEN Cedric David, LUO Wen, Andreas ZÜTTEL. From single crystal to single atom catalysts: Structural factors influencing the performance of metal catalysts for CO2 electroreduction[J]. ACS Catalysis, 2023, 13(2): 948-973. |
9 | JIA Chen, DASTAFKAN Kamran, ZHAO Chuan. Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction[J]. Current Opinion in Electrochemistry, 2022, 31: 100854. |
10 | ZHU Mengnan, JIANG Haoqing, ZHANG Bowen, et al. Nanosecond laser confined bismuth moiety with tunable structures on graphene for carbon dioxide reduction[J]. ACS Nano, 2023, 17(9): 8705-8716. |
11 | SHAO Wei, ZHANG Xiaodong. Atomic-level engineering of two-dimensional electrocatalysts for CO2 reduction[J]. Nanoscale, 2021, 13(15): 7081-7095. |
12 | FU Zhanzhao, WU Mingliang, ZHOU Yipeng, et al. Support-based modulation strategies in single-atom catalysts for electrochemical CO2 reduction: Graphene and conjugated macrocyclic complexes[J]. Journal of Materials Chemistry A, 2022, 10(11): 5699-5716. |
13 | WANG Maohuai, KONG Lingyan, LU Xiaoqing, et al. First-row transition metal embedded pyrazine-based graphynes as high-performance single atom catalysts for the CO2 reduction reaction[J]. Journal of Materials Chemistry A, 2022, 10(16): 9048-9058. |
14 | CHOI Hyeonuk, LEE Dong-Kyu, HAN Mi-Kyung, et al. Review—Non-noble metal-based single-atom catalysts for efficient electrochemical CO2 reduction reaction[J]. Journal of the Electrochemical Society, 2020, 167(16): 164503. |
15 | JIANG Zhuoli, WANG Tao, PEI Jiajing, et al. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency[J]. Energy & Environmental Science, 2020, 13(9): 2856-2863. |
16 | ZHANG Erhuan, WANG Tao, YU Ke, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction[J]. Journal of the American Chemical Society, 2019, 141(42): 16569-16573. |
17 | 张少阳, 商阳阳, 赵瑞花, 等. 电催化还原二氧化碳制一氧化碳催化剂研究进展[J]. 化工进展, 2022, 41(4): 1848-1857. |
ZHANG Shaoyang, SHANG Yangyang, ZHAO Ruihua, et al. Research progress on catalysts for electrocatalytic reduction of carbon dioxide to carbon monoxide[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1848-1857. | |
18 | JEONG Gyoung Hwa, TAN Ying Chuan, SONG Jun Tae, et al. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction[J]. Chemical Engineering Journal, 2021, 426: 131063. |
19 | WANG Minjie, WANG Li, LI Qingbin, et al. Regulating the coordination geometry and oxidation state of single-atom Fe sites for enhanced oxygen reduction electrocatalysis[J]. Small, 2023, 19(24): e2300373. |
20 | ZHANG Zhengping, SUN Junting, WANG Feng, et al. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework[J]. Angewandte Chemie International Edition, 2018, 130(29): 9176-9181. |
21 | LIU Jing, JIAO Menggai, MEI Bingbao, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2019, 131(4): 1175-1179. |
22 | LAI Weihong, ZHANG Binwei, HU Zhenpeng, et al. The quasi-Pt-allotrope catalyst: Hollow PtCo@single-atom Pt1 on nitrogen-doped carbon toward superior oxygen reduction[J]. Advanced Functional Materials, 2019, 29(13): 1807340. |
23 | ZHANG Ningqiang, ZHANG Xinxin, KANG Yikun, et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2021, 60(24): 13388-13393. |
24 | WANG Shuguang, ZHOU Peng, ZHOU Lei, et al. A unique gas-migration, trapping, and emitting strategy for high-loading single atomic Cd sites for carbon dioxide electroreduction[J]. Nano Letters, 2021, 21(10): 4262-4269. |
25 | ZHAI Lipeng, YANG Shuai, LU Chenbao, et al. CoN5 sites constructed by anchoring Co porphyrins on vinylene-linked covalent organic frameworks for electroreduction of carbon dioxide[J]. Small, 2022, 18(32): e2200736. |
26 | YANG Xiao, CHENG Jun, YANG Xian, et al. Single Ni active sites with a nitrogen and phosphorus dual coordination for an efficient CO2 reduction[J]. Nanoscale, 2022, 14(18): 6846-6853. |
27 | MEDFORD Andrew J, VOJVODIC Aleksandra, HUMMELSHØJ Jens S, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. Journal of Catalysis, 2015, 328: 36-42. |
28 | WU Qing, WU Chongchong. Mechanism insights on single-atom catalysts for CO2 conversion[J]. Journal of Materials Chemistry A, 2023, 11(10): 4876-4906. |
29 | KORTLEVER Ruud, SHEN Jing, SCHOUTEN Klaas Jan P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. The Journal of Physical Chemistry Letters, 2015, 6(20): 4073-4082. |
30 | TANG Tianmi, WANG Zhenlu, GUAN Jingqi. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials[J]. Advanced Functional Materials, 2022, 32(19): 2111504. |
31 | LI Meiping, Qing LYU, SI Wenyan, et al. Sp-hybridized nitrogen as new anchoring sites of iron single atoms to boost the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2022, 61(38): e202208238. |
32 | HU Riming, LI Yongcheng, WANG Fuhe, et al. Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions[J]. Nanoscale, 2020, 12(39): 20413-20424. |
33 | HU Chun, SONG Erhong, WANG Maoyu, et al. Partial-single-atom, partial-nanoparticle composites enhance water dissociation for hydrogen evolution[J]. Advanced Science, 2021, 8(2): 2001881. |
34 | YU Ke, SUN Kaian, CHEONG Weng-Chon Max), et al. Oxalate-assisted synthesis of hollow carbon nanocage with Fe single atoms for electrochemical CO2 reduction[J]. Small, 2023, 19(39): 2302611. |
35 | CHENG Huiyuan, WU Xuemei, LI Xiangcun, et al. Zeolitic imidazole framework-derived FeN5-doped carbon as superior CO2 electrocatalysts[J]. Journal of Catalysis, 2021, 395: 63-69. |
36 | XIE Yuxin, LIU Nian, LI Xin, et al. The influence of single-atom Fe2+/3+N4 spin state on the electroreduction of CO2 to CO/HCOOH by analyzing proton/electron transfer mechanisms and free energy evolutions[J]. The Journal of Physical Chemistry C, 2021, 125(39): 21460-21470. |
37 | LI Ke, ZHANG Shengbo, ZHANG Xiuli, et al. Atomic tuning of single-atom Fe-N-C catalysts with phosphorus for robust electrochemical CO2 reduction[J]. Nano Letters, 2022, 22(4): 1557-1565. |
38 | PAN Fuping, LI Boyang, SARNELLO Erik, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction[J]. ACS Catalysis, 2020, 10(19): 10803-10811. |
39 | NI Wenpeng, LIU Zhixiao, ZHANG Yan, et al. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site[J]. Advanced Materials, 2021, 33(1): 2003238. |
40 | WANG Ying, PARK Byoung Joon, PAIDI Vinod K, et al. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction[J]. ACS Energy Letters, 2022, 7(2): 640-649. |
41 | LAKSHMANAN Keseven, HUANG Wei-Hsiang, CHALA Soressa Abera, et al. Highly active oxygen coordinated configuration of Fe single-atom catalyst toward electrochemical reduction of CO2 into multi-carbon products[J]. Advanced Functional Materials, 2022, 32(24): 2109310. |
42 | ZHAO Kun, NIE Xiaowa, WANG Haozhi, et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon[J]. Nature Communications, 2020, 11(1): 2455. |
43 | CHU Senlin, KANG Changwoo, PARK Woonghyeon, et al. Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4 [J]. SmartMat, 2022, 3(1): 194-205. |
44 | XU Haiping, REBOLLAR Dominic, HE Haiying, et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper[J]. Nature Energy, 2020, 5: 623-632. |
45 | CHENG Huiyuan, WU Xuemei, LI Xiangcun, et al. Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction[J]. Chemical Engineering Journal, 2021, 407: 126842. |
46 | CAI Yanming, FU Jiaju, ZHOU Yang, et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane[J]. Nature Communications, 2021, 12(1): 586. |
47 | CHENG Yi, ZHAO Shiyong, LI Haobo, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 [J]. Applied Catalysis B: Environmental, 2019, 243: 294-303. |
48 | AN Beibei, ZHOU Jingsheng, ZHU Zhiyong, et al. Uncovering the coordination effect on the Ni single-atom catalysts for CO2 reduction including vacancy defect and non-vacancy defect structures[J]. Fuel, 2022, 310: 122472. |
49 | GU Xiaokang, JIAO Yuying, WEI Bo, et al. Boron bridged NiN4B2C x single-atom catalyst for superior electrochemical CO2 reduction[J]. Materials Today, 2022, 54: 63-71. |
50 | CHENG Huiyuan, FAN Zihao, WU Xuemei, et al. Coordination engineering of the hybrid Co-C and Co-N active sites for efficient catalyzing CO2 electroreduction[J]. Journal of Catalysis, 2022, 405: 634-640. |
51 | MIAO Qiyang, LU Chengbao, XU Qing, et al. CoN2O2 sites in carbon nanosheets by template-pyrolysis of COFs for CO2RR[J]. Chemical Engineering Journal, 2022, 450: 138427. |
52 | HU Chenghong, ZHANG Yue, HU Anqian, et al. Near- and long-range electronic modulation of single metal sites to boost CO2 electrocatalytic reduction[J]. Advanced Materials, 2023, 35(19): e2209298. |
53 | DENG Yachen, ZHAO Jian, WANG Shifu, et al. Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2023, 145(13): 7242-7251. |
54 | YANG Fangqi, MAO Xinyu, MA Mingfeng, et al. Scalable strategy to fabricate single Cu atoms coordinated carbons for efficient electroreduction of CO2 to CO[J]. Carbon, 2020, 168: 528-535. |
55 | CHEN Shenghua, LI Wenhao, JIANG Wenjun, et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis[J]. Angewandte Chemie International Edition, 2022, 61(4): e202114450. |
56 | SHI Guodong, XIE Yunlong, DU Lili, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4 [J]. Angewandte Chemie International Edition, 2022, 61(23): e202203569. |
57 | YANG Hengpan, WU Yu, LI Guodong, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol[J]. Journal of the American Chemical Society, 2019, 141(32): 12717-12723. |
58 | LIU Jingjuan, YANG Dan, ZHOU Yi, et al. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction[J]. Angewandte Chemie International Edition, 2021, 60(26): 14473-14479. |
59 | HAO Jican, ZHUANG Zechao, HAO Jiace, et al. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction[J]. Advanced Energy Materials, 2022, 12(26): 2200579. |
60 | WANG Weijuan, CAO Changsheng, WANG Kaiwen, et al. Boosting CO2 electroreduction to CO with abundant nickel single atom active sites[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2542-2548. |
61 | HU Meng ke, ZHOU Shenghua, MA Dong dong, et al. New insight into heterointerfacial effect for heterogenized metallomacrocycle catalysts in executing electrocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2022, 310: 121324. |
62 | YANG Hengpan, LIN Qing, WU Yu, et al. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density[J]. Nano Energy, 2020, 70: 104454. |
63 | SONG Xiaokai, ZHANG Hao, YANG Yuqi, et al. Bifunctional nitrogen and cobalt codoped hollow carbon for electrochemical syngas production[J]. Advanced Science, 2018, 5(7): 1800177. |
64 | REN Xinyi, LIU Song, LI Huicong, et al. Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst[J]. Science China Chemistry, 2020, 63(12): 1727-1733. |
65 | REN Xinyi, ZHAO Jian, LI Xuning, et al. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol[J]. Nature Communications, 2023, 14(1): 3401. |
66 | WANG Tingxia, GUO Lulu, PEI Hao, et al. Electron-rich pincer ligand-coupled cobalt porphyrin polymer with single-atom sites for efficient (photo)electrocatalytic CO2 reduction at ultralow overpotential[J]. Small, 2021, 17(45): e2102957. |
67 | CHEN Zhangsen, ZHANG Gaixia, HU Qingmin, et al. The deep understanding into the promoted carbon dioxide electroreduction of ZIF-8-derived single‐atom catalysts by the simple grinding process[J]. Small Structures, 2022, 3(7): 2200031. |
68 | ZHANG Huinian, WANG Huiqi, JIA Suping, et al. CoN4 active sites in a graphene matrix for the highly efficient electrocatalysis of CO2 reduction[J]. New Carbon Materials, 2022, 37(4): 734-742. |
69 | PAN Yuan, LIN Rui, CHEN Yinjuan, et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability[J]. Journal of the American Chemical Society, 2018, 140(12): 4218-4221. |
70 | LIANG Zhong, SONG Lianpeng, SUN Mingzi, et al. Atomically dispersed indium and cerium sites for selectively electroreduction of CO2 to formate[J]. Nano Research, 2023, 17(6): 8757-8764. |
[1] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[2] | LIAO Xu, ZHOU Jun, LUO Jie, ZENG Ruilin, WANG Zeyu, LI Zunhua, LIN Jinqing. Research progress on CO2 cycloaddition reaction catalyzed by porous ionic polymers [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4925-4940. |
[3] | XIU Haoran, WANG Yungang, BAI Yanyuan, LIU Tao, ZHANG Xingbang, ZHANG Yijia. Pilot test of H2O2 low temperature catalytic oxidation for desulfurization and denitrification [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4941-4950. |
[4] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
[5] | LIANG Hongcheng, ZHAO Dongni, QUAN Yin, LI Jingni, HU Xinyi. Influence of SEI film morphology and structure on the performance of lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5049-5062. |
[6] | WU Jianyang, WANG Runa, CHEN Yao, SHEN Lanyao, YU Yongli, JIANG Ning, QIU Jingyi, ZHOU Henghui. Preparation process of high nickel cathode precursor for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5079-5085. |
[7] | LI Meixuan, CHENG Jianfeng, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Junlian, WANG Chunxia, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Synthesis and electrochemical mechanism of high voltage lithium nickel manganate cathode materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5086-5094. |
[8] | MA Hongzhou, DANG Yubo, WANG Yaoning, ZENG Jinyang, ZHAO Xiaojun, SHI Jianwei. Zinc-based desulfurizer scrap and copper-zinc-based catalyst synergistic vacuum carbothermal extraction of zinc [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5275-5281. |
[9] | HU Tingxia, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, XIE Teng. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365. |
[10] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
[11] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[12] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
[13] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
[14] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
[15] | YANG Guang, JIANG Ruiting, ZHANG Yue, FU Zijian, LIU Wei. Application of vanadium pentoxide/carbon nanocomposites in supercapacitors [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3857-3871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |