Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5275-5281.DOI: 10.16085/j.issn.1000-6613.2023-1428
• Resources and environmental engineering • Previous Articles
MA Hongzhou1(), DANG Yubo1, WANG Yaoning1(), ZENG Jinyang1, ZHAO Xiaojun1, SHI Jianwei2
Received:
2023-08-16
Revised:
2023-11-04
Online:
2024-09-30
Published:
2024-09-15
Contact:
WANG Yaoning
马红周1(), 党煜博1, 王耀宁1(), 曾劲阳1, 赵小军1, 史建伟2
通讯作者:
王耀宁
作者简介:
马红周(1973—),男,博士,副教授,研究方向为二次资源利用。E-mail:mhzwyn@126.com。
基金资助:
CLC Number:
MA Hongzhou, DANG Yubo, WANG Yaoning, ZENG Jinyang, ZHAO Xiaojun, SHI Jianwei. Zinc-based desulfurizer scrap and copper-zinc-based catalyst synergistic vacuum carbothermal extraction of zinc[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5275-5281.
马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1428
物料 | MgO | Al2O3 | SiO2 | SO3 | Cl | K2O | CaO | TiO2 | Fe2O3 | NiO | ZnO | CuO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
废脱硫剂 | 0.21 | 0.41 | 0.44 | 41.87 | 0.69 | 0.04 | 0.35 | 0.02 | 0.05 | 0.05 | 55.88 | — |
铜锌基催化剂 | 0.22 | 10.53 | 0.9 | 0.84 | 0.15 | 0.02 | 0.54 | 0.01 | 0.32 | 0.03 | 33.22 | 53.13 |
物料 | MgO | Al2O3 | SiO2 | SO3 | Cl | K2O | CaO | TiO2 | Fe2O3 | NiO | ZnO | CuO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
废脱硫剂 | 0.21 | 0.41 | 0.44 | 41.87 | 0.69 | 0.04 | 0.35 | 0.02 | 0.05 | 0.05 | 55.88 | — |
铜锌基催化剂 | 0.22 | 10.53 | 0.9 | 0.84 | 0.15 | 0.02 | 0.54 | 0.01 | 0.32 | 0.03 | 33.22 | 53.13 |
灰分 | 挥发分 | 固定碳 | Al2O3 | CaO |
---|---|---|---|---|
7.6 | 3.73 | 75 | 2.18 | 2.29 |
灰分 | 挥发分 | 固定碳 | Al2O3 | CaO |
---|---|---|---|---|
7.6 | 3.73 | 75 | 2.18 | 2.29 |
反应式 | 起始反应温度/℃ | 编号 |
---|---|---|
CuO+C | <200 | (2) |
2CuO+C | <200 | (3) |
ZnO+C | 500 | (4) |
2ZnO+C | 550 | (5) |
ZnS+2Cu | 750 | (6) |
2ZnS+C | 900 | (7) |
ZnS+Cu | 1050 | (8) |
反应式 | 起始反应温度/℃ | 编号 |
---|---|---|
CuO+C | <200 | (2) |
2CuO+C | <200 | (3) |
ZnO+C | 500 | (4) |
2ZnO+C | 550 | (5) |
ZnS+2Cu | 750 | (6) |
2ZnS+C | 900 | (7) |
ZnS+Cu | 1050 | (8) |
名称 | 物质的量/mol |
---|---|
起始反应物 | |
ZnO | 1 |
CuO | 2 |
ZnS | 1 |
C | 4 |
产物 | |
Zn | 0 |
Cu | 0 |
Cu2S | 0 |
Zn(g) | 0 |
CO | 0 |
CO2 | 0 |
名称 | 物质的量/mol |
---|---|
起始反应物 | |
ZnO | 1 |
CuO | 2 |
ZnS | 1 |
C | 4 |
产物 | |
Zn | 0 |
Cu | 0 |
Cu2S | 0 |
Zn(g) | 0 |
CO | 0 |
CO2 | 0 |
11 | CHIMENTÃO R J, MIRANDA B C, RUIZ D, et al. Catalytic performance of zinc-supported copper and nickel catalysts in the glycerol hydrogenolysis[J]. Journal of Energy Chemistry, 2020, 42: 185-194. |
12 | 黄利, 杨向丰, 任宏伟, 等. 铜锌盐的溶剂对完全液相法制备的CuZnAl催化剂催化性能的影响[J].石油学报(石油加工), 2018, 34(6): 1089-1096. |
HUANG Li, YANG Xiangfeng, REN Hongwei, et al. Effects of solvent for copper and zinc nitrate on the catalytic performance of CuZnAl catalyst prepared by complete liquid-phase method[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2018, 34(6): 1089-1096. | |
13 | 刘华伟, 薛静丽, 钱胜涛, 等. 铜锌铝系醋酸乙酯加氢制乙醇催化剂的性能研究[J].天然气化工(C1化学与化工), 2021, 46(3): 53-56, 64. |
LIU Huawei, XUE JingLi, QIAN ShengTao, et al. Study on performance of Cu-Zn-Al based catalyst for hydrogenation of ethyl acetate to ethanol[J]. Natural Gas Chemical Industry, 2021, 46(3): 53-56, 64. | |
14 | 任超, 徐波, 王安杰, 等. 铜锌铝催化剂制备方法对CO2加氢反应性能影响[J].洁净煤技术, 2022, 28(1): 70-76. |
REN Chao, XU Bo, WANG Anjie, et al. Influence of the preparation method of carbon dioxide CO2 hydrogenation reaction[J]. Clean Coal Technology, 2022, 28(1): 70-76. | |
15 | 叶晓东, 于杨, 邱祥海, 等. 铜锌沉淀洗涤对甲醇合成催化剂性能的影响[J].石油化工, 2022, 51(12): 1381-1387. |
YE Xiaodong, YU Yang, QIU Xianghai, et al. Effect of washing of Cu-Zn precipitate on performance of methanol synthesis catalyst[J]. Petrochemical Technology, 2022, 51(12): 1381-1387. | |
16 | 王伟. 合成甲醇催化剂还原、钝化的探究 [J].中国设备工程, 2020, (14): 226-228. |
WANG Wei. Exploration of reduction and passivation of synthetic methanol catalysts[J]. China Plant Engineering, 2020, (14): 226-228. | |
17 | 李民. 国产甲醇合成催化剂钝化后再使用探析[J].中氮肥, 2018 (3): 54-59. |
LI Min. The domestic methanol synthesis catalyst was passivated and then used for analysis[J]. M-Sized Nitrogenous Fertilizer Progress, 2018 (3): 54-59. | |
18 | 朱建君, 李楠, 王军峰, 等. 废氧化锌脱硫剂的回收利用[J].石化技术, 2017, 24(1): 136, 161. |
ZHU Jianjun, LI Nan, WANG Junfeng, et al. Recycling of waste zinc oxide desulfurizer[J]. Petrochemical Industry Technology, 2017, 24(1): 136, 161. | |
19 | 徐航, 戴仁伟, 杨聪, 等. 废硫酸与含锌废催化剂的联合处理工艺研究[J].中国资源综合利用, 2021, 39(3): 16-18. |
XU Hang, DAI Renwei, YANG Cong, et al. Study on the combined treatment process of waste sulfuric acid and zinc-containing waste catalyst[J]. China Resources Comprehensive Utilization, 2021, 39(3): 16-18. | |
20 | 顾成, 冯世宏, 刘园园, 等. 酸浸-置换工艺回收废甲醇催化剂中铜的研究[J].辽宁化工, 2014, 43(10): 1230-1232. |
GU Cheng, FENG Shihong, LIU Yuanyuan, et al. Study on recycling copper from waste methanol catalyst by acid leaching-replacement process[J]. Liaoning Chemical Industry, 2014, 43(10): 1230-1232. | |
21 | 郝喜才, 胡斌杰, 景中建. 酸溶置换法回收废甲醇催化剂中铜锌的研究[J].无机盐工业, 2006, 38 (12): 51-53. |
HAO Xicai, HU Binjie, JING Zhongjian. Study on recovery of Cu/Zn in waste catalyst from the production of methanol by pickling replacement process[J]. Inorganic Chemicals Industry, 2006, 38 (12): 51-53. | |
22 | YARAS A, SUTCU M, ERDOGMUS E, et al. Recycling and immobilization of zinc extraction residue in clay-based brick manufacturing[J]. Journal of Building Engineering, 2021, 41: 102421. |
23 | WANG Yayun, YANG Huifen, ZHANG Ge, et al. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy[J]. Chemical Engineering Journal Advances, 2020, 3: 100023. |
24 | KAYA Muammer, HUSSAINI Shokrullah, KURSUNOGLU Sait. Critical review on secondary zinc resources and their recycling technologies[J]. Hydrometallurgy, 2020, 195: 105362. |
25 | 史建公, 张敏宏, 赵桂良, 等. 废甲醇催化剂综合利用技术进展[J].中外能源, 2009, 14(12): 76-84. |
SHI Jiangong, ZHANG Minhong, ZHAO Guiliang, et al. Advances in technology for recycling waste methanol catalyst[J]. Sino-Global Energy, 2009, 14(12): 76-84. | |
26 | 何璇, 黄润, 李博, 等. 真空碳热还原含锌粉尘制备锌热力学模拟研究[J].贵州大学学报(自然科学版), 2022, 39(2): 119-124. |
1 | 白天昊, 王晓雯, 杨梦滋, 等. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J].化工学报, 2023, 74(4): 1772-1780. |
BAI Tianhao, WANG Xiaowen, YANG Mengzi, et al. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite[J]. CIESC Journal, 2023, 74(4): 1772-1780. | |
2 | 彭奔, 杨雷, 彭晓虎, 等. 废ZnO脱硫剂再生工艺进展[J].广东化工, 2019, 46(22): 72-73. |
PENG Ben, YANG Lei, PENG Xiaohu, et al. Progress in regeneration technology of waste ZnO desulfurizer[J]. Guangdong Chemical Industry, 2019, 46(22): 72-73. | |
3 | 李双林, 王钰佳, 康蕾, 等. 一维氧化锌基复合脱硫剂的制备及其脱硫性能[J].硅酸盐学报, 2021, 49(5): 1017-1024. |
LI Shuanglin, WANG Yujia, KANG Lei, et al. Preparation and desulfurization performance of one-dimensional ZnO based composite desulfurize[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 1017-1024. | |
4 | 演康, 杨颂, 刘守军, 等. 低阶煤原位制备ZnO基活性炭脱硫剂[J].化工学报, 2021, 72(9): 4921-4930. |
YAN Kang, YANG Song, LIU Shoujun, et al. In-situ preparation of ZnO-based activated carbon desulfurizer from low-rank coal[J]. CIESC Journal, 2021, 72(9): 4921-4930. | |
5 | 朱军利, 张林生, 盛明泽, 等. 锌基合成气深度精脱硫剂开发及性能分析[J].工业催化, 2020, 28(8): 56-60. |
ZHU Junli, ZHANG Linsheng, SHENG Mingze, et al. Preparation and desulfurization performance evaluation of zinc-based syn-gas fine desulfurizers[J]. Industrial Catalysis, 2020, 28(8): 56-60. | |
6 | 彭奔, 杨雷, 彭晓虎, 等. 氧化锌脱硫剂研究进展[J].广东化工, 2020, 47(6): 139-140, 146. |
PENG Ben, YANG Lei, PENG Xiaohu, et al. Research progress of zinc oxide desulfurization adsorbents[J]. Guangdong Chemical Industry, 2020, 47(6): 139-140, 146. | |
7 | SAEDY S, NEWTON M A, ZABILSKIY M, et al. Copper-zinc oxide interface as a methanol-selective structure in Cu-ZnO catalyst during catalytic hydrogenation of carbon dioxide to methanol[J]. Catalysis Science & Technology, 2022, 12(8): 2703-2716. |
8 | KOBL Kilian, THOMAS Sébastien, ZIMMERMANN Yvan, et al. Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper-zinc oxide catalysts with alumina or zirconia supports[J]. Catalysis Today, 2016, 270: 31-42. |
9 | GARBARINO Gabriella, RIANI Paola, VILLA GARCÍA Maria, et al. A study of ethanol dehydrogenation to acetaldehyde over copper/zinc aluminate catalysts[J]. Catalysis Today, 2020, 354: 167-175. |
26 | HE Xuan, HUANG Run, LI Bo, et al. Thermodynamic simulation of preparation of zinc by vacuum carbothermic reduction of zinc-containing dust[J]. Journal of Guizhou University(Natural Sciences), 2022, 39(2): 119-124. |
27 | 臧永港, 黄润, 杨婧飘, 等. 含锌电炉粉尘水浸处理-真空碳热还原工艺[J].中国冶金, 2022, 32(9): 134-141. |
ZANG Yonggang, HUANG Run, YANG Jingpiao, et al. Water leaching treatment-vacuum carbothermic reduction process of zinc-bearing electric furnace dust[J]. China Metallurgy, 2022, 32(9): 134-141. | |
28 | 李存兄, 魏昶, 李勇, 等. 真空下铜还原高铁闪锌矿的研究[J].有色金属(冶炼部分), 2006 (6): 7-10. |
LI Cunxiong, WEI Chang, LI Yong, et al. Study on marmatite reduction by copper catalyst in vacuum[J]. Nonferrous Metals(Extractive Metallurgy), 2006 (6): 7-10. | |
10 | DASIREDDY Venkata D B C, LIKOZAR Blaž. CO x -free hydrogen generation via decomposition of ammonia over copper and zinc-based catalysts[J]. Fuel, 2017, 196: 325-335. |
[1] | LIAO Xu, ZHOU Jun, LUO Jie, ZENG Ruilin, WANG Zeyu, LI Zunhua, LIN Jinqing. Research progress on CO2 cycloaddition reaction catalyzed by porous ionic polymers [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4925-4940. |
[2] | XIU Haoran, WANG Yungang, BAI Yanyuan, LIU Tao, ZHANG Xingbang, ZHANG Yijia. Pilot test of H2O2 low temperature catalytic oxidation for desulfurization and denitrification [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4941-4950. |
[3] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
[4] | LI Zhenwu, PU Di, XIONG Yachun, WU Dingying, JIN Cheng, GUO Yongjun. Research progress of nanomaterials for oil displacement in enhancing oil recovery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5035-5048. |
[5] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[6] | XIANG Rui, AI Bo, WU Gaosheng, LI Yuzhe, ZONG Rui, XU Baoyun, DU Lijun. Measurement and regression of solid-liquid binary equilibrium data for lithium battery additive FEC-VC system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4246-4252. |
[7] | GAO Xinyue, FAN Gaofeng, LIU Aiping, WANG Chang'an, HOU Yujie, ZHANG Jinming, XU Jie, CHE Defu. Research progress on waste heat recovery technology for flue gas and slurry after wet desulphurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4307-4319. |
[8] | HU Tingxia, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, XIE Teng. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365. |
[9] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
[10] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[11] | LI Weijie, LU Leilei, LI Deke, WANG Chunhang, ZHANG Zuming, TAN Qiang. Lithium-ion battery disassembly and recycling technology and progress [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4601-4613. |
[12] | HU Rui, LI Xianru, PIAO Weiling, FENG Pan, LUO Lei, LUO Gang, WEI Huangzhao, LIU Zhengang, ZHANG Shicheng. Progress on the hydrothermal conversion equipment and technology of organic waste [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3672-3691. |
[13] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
[14] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
[15] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |