Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5475-5485.DOI: 10.16085/j.issn.1000-6613.2023-1643
• Energy processes and technology • Previous Articles
QIN Yuanzhi1(), ZHANG Hanwen2, YIN Ran3, XIONG Jianhua4, HUANG Qiyu1()
Received:
2023-09-18
Revised:
2023-12-27
Online:
2024-10-29
Published:
2024-10-15
Contact:
HUANG Qiyu
秦远智1(), 张瀚文2, 尹然3, 熊建华4, 黄启玉1()
通讯作者:
黄启玉
作者简介:
秦远智(1999—),男,博士研究生,研究方向为特高含水原油低温集输黏壁特性。E-mail:2829482124@qq.com。
基金资助:
CLC Number:
QIN Yuanzhi, ZHANG Hanwen, YIN Ran, XIONG Jianhua, HUANG Qiyu. Method for determining temperature boundary of low temperature gathering and transportation of crude oil in extra-high water cut period[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5475-5485.
秦远智, 张瀚文, 尹然, 熊建华, 黄启玉. 特高含水期原油低温集输温度边界确定方法[J]. 化工进展, 2024, 43(10): 5475-5485.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1643
原油油样 | 凝点/°C | 50°C油样密度/kg·m-3 | 析蜡点/°C | 析蜡高峰/°C | 含蜡量(质量分数)/% |
---|---|---|---|---|---|
1#原油 | 36 | 842.0 | 54.32 | 28.71 | 26.23 |
2#原油 | 35 | 841.0 | 53.62 | 19.98 | 23.26 |
3#原油 | 38 | 858.5 | 56.34 | 29.64 | 24.06 |
4#原油 | 32 | 833.0 | 51.37 | 17.67 | 13.77 |
5#原油 | 29 | 830.0 | 51.37 | 17.98 | 17.05 |
6#原油 | 34 | 850.4 | 38.20 | 19.26 | 21.99 |
原油油样 | 凝点/°C | 50°C油样密度/kg·m-3 | 析蜡点/°C | 析蜡高峰/°C | 含蜡量(质量分数)/% |
---|---|---|---|---|---|
1#原油 | 36 | 842.0 | 54.32 | 28.71 | 26.23 |
2#原油 | 35 | 841.0 | 53.62 | 19.98 | 23.26 |
3#原油 | 38 | 858.5 | 56.34 | 29.64 | 24.06 |
4#原油 | 32 | 833.0 | 51.37 | 17.67 | 13.77 |
5#原油 | 29 | 830.0 | 51.37 | 17.98 | 17.05 |
6#原油 | 34 | 850.4 | 38.20 | 19.26 | 21.99 |
参数 | 参数值 |
---|---|
a | 13.522 |
b | -0.341 |
c | 0.276 |
参数 | 参数值 |
---|---|
a | 13.522 |
b | -0.341 |
c | 0.276 |
影响因素 | 相关性 | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
凝点 | |||||
皮尔逊相关性 | 1 | ||||
显著性(双尾) | |||||
含蜡量 | |||||
皮尔逊相关性 | 0.793** | 1 | |||
显著性(双尾) | <0.001 | ||||
密度 | |||||
皮尔逊相关性 | 0.886** | 0.723** | 1 | ||
显著性(双尾) | <0.001 | <0.001 | |||
流速 | |||||
皮尔逊相关性 | 0.027 | -0.063 | 0.008 | 1 | |
显著性(双尾) | 0.884 | 0.730 | 0.966 | ||
最低安全集输温度 | |||||
皮尔逊相关性 | 0.701** | 0.612** | 0.578** | -0.623** | 1 |
显著性(双尾) | <0.001 | <0.001 | <0.001 | <0.001 |
影响因素 | 相关性 | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
凝点 | |||||
皮尔逊相关性 | 1 | ||||
显著性(双尾) | |||||
含蜡量 | |||||
皮尔逊相关性 | 0.793** | 1 | |||
显著性(双尾) | <0.001 | ||||
密度 | |||||
皮尔逊相关性 | 0.886** | 0.723** | 1 | ||
显著性(双尾) | <0.001 | <0.001 | |||
流速 | |||||
皮尔逊相关性 | 0.027 | -0.063 | 0.008 | 1 | |
显著性(双尾) | 0.884 | 0.730 | 0.966 | ||
最低安全集输温度 | |||||
皮尔逊相关性 | 0.701** | 0.612** | 0.578** | -0.623** | 1 |
显著性(双尾) | <0.001 | <0.001 | <0.001 | <0.001 |
参数 | X4-21-619 | X4-2-F17 |
---|---|---|
凝点/℃ | 30 | 30 |
含蜡量/% | 25.32 | 25.32 |
相对密度(20℃) | 0.852 | 0.852 |
油井含水率/% | 95.5 | 96.1 |
管道外径/mm | 60 | 60 |
管道壁厚/mm | 3.5 | 3.5 |
日产液量/m3·d-1 | 43.8 | 47.2 |
进间温度/℃ | 34 | 37 |
井口回压/MPa | 0.57 | 0.4 |
掺水温度/℃ | 48 | 44 |
参数 | X4-21-619 | X4-2-F17 |
---|---|---|
凝点/℃ | 30 | 30 |
含蜡量/% | 25.32 | 25.32 |
相对密度(20℃) | 0.852 | 0.852 |
油井含水率/% | 95.5 | 96.1 |
管道外径/mm | 60 | 60 |
管道壁厚/mm | 3.5 | 3.5 |
日产液量/m3·d-1 | 43.8 | 47.2 |
进间温度/℃ | 34 | 37 |
井口回压/MPa | 0.57 | 0.4 |
掺水温度/℃ | 48 | 44 |
结果 | 最低安全集输温度计算值/℃ |
---|---|
X4-21-619 | 22 |
X4-2-F17 | 20 |
结果 | 最低安全集输温度计算值/℃ |
---|---|
X4-21-619 | 22 |
X4-2-F17 | 20 |
1 | 刘晓燕. 特高含水期油气水管道安全混输界限确定及水力热力计算方法研究[D]. 大庆: 大庆石油学院, 2005. |
LIU Xiaoyan. The limit confirming and hydraulic/thermodynamic calculation method research for oil-gas-water mixing transportation safe in pipeline during oil producing with supper high water cut[D]. Daqing: Daqing Petroleum Institute, 2005. | |
2 | 李东玻. 国外高含水油田特高含水期主要技术措施及启示[J]. 当代石油石化, 2013, 21(10): 13-15, 21. |
LI Dongbo. The main EOR technologies and enlightenment of foreign typical high water cut oilfields[J]. Petroleum & Petrochemical Today, 2013, 21(10): 13-15, 21. | |
3 | 方宏长, 冯明生. 中国东部几个主要油田高含水期提高水驱采收率的方向[J]. 石油勘探与开发, 1999, 26(1): 60-62. |
FANG Hongchang, FENG Mingsheng. Direction in enhancing waterflooding recovery of oil fields with high water cut in Eastern China[J]. Petroleum Exploration and Development, 1999, 26(1): 60-62. | |
4 | 董广平. 低压液井不加热集输技术研究[D]. 大庆: 东北石油大学, 2012. |
DONG Guangping. Non-thermal technique applying in gathering of low production well[D]. Daqing: Northeast Petroleum University, 2012. | |
5 | 贾毅. 长庆油田原油不加热输送的工艺技术[J]. 油田地面工程, 1988, 7(2): 1-6, 4. |
JIA Yi. Non-heated oil gathering and transferring technique in Changqing oilfield[J]. Oil-Gasfield Surface Engineering, 1988, 7(2): 1-6, 4. | |
6 | 陈丽艳, 刘晓燕. 高含水油田不加热集输界限及运行管理方法[J]. 应用能源技术, 2007(4): 1-3. |
CHEN Liyan, LIU Xiaoyan. The limit and the run management method of unheated gathering and transportation in high water-cut oilfield[J]. Applied Energy Technology, 2007(4): 1-3. | |
7 | 吴景峰. 高含水原油的不加热集输试验[J]. 油田地面工程, 1982, 1(4): 12-15. |
WU Jingfeng. Non-heating gathering & transferring tests on high water content crude[J]. Oil-Gasfield Surface Engineering, 1982, 1(4): 12-15. | |
8 | 宋承毅. 论“三高”原油不加热集油的影响因素[J]. 油田地面工程, 1995, 14(1): 9-12, 18. |
SONG Chengyi. Discussion on main affecting factors of 3-high type crude unheated gathering[J]. Oil-Gasfield Surface Engineering, 1995, 14(1): 9-12, 18. | |
9 | 高学良, 朱玉慧, 潘永梅, 等. 特高含水期原油低温集输界限研究[J]. 油气田地面工程, 2005, 24(12): 25. |
GAO Xueliang, ZHU Yuhui, PAN Yongmei, et al. Study on low temperature gathering and transportation limit of crude oil in ultra-high water cut stage[J]. Oil-Gasfield Surface Engineering, 2005, 24(12): 25. | |
10 | 刘晓燕, 宛辉, 韩国有, 等. 特高含水不加热集油运行管理关键技术[J]. 油气田地面工程, 2007, 26(10): 13-14. |
LIU Xiaoyan, WAN Hui, HAN Guoyou, et al. Key technology of operation and management of unheated oil gathering with extra-high water cut[J]. Oil-Gasfield Surface Engineering, 2007, 26(10): 13-14. | |
11 | 丁振军. 高含水、高黏、易凝原油单井不加热集油的边界条件的确定[D]. 北京: 中国石油大学(北京), 2013. |
DING Zhenjun. Determination of boundary conditions in the single well gathering system of high-water-cut, highly viscous, and high-gel-point crude oil without heating[D]. Beijing: China University of Petroleum (Beijing), 2013. | |
12 | ZHENG Haimin, HUANG Qiyu, WANG Changhui, et al. Wall sticking of high water-cut, highly viscous and high gel-point crude oil transported at low temperatures[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(4): 20-29. |
13 | 田东恩. 西区油田高含水期原油粘壁规律研究[J]. 科学技术与工程, 2015, 15(9): 176-179. |
TIAN Dongen. Study on the wall sticking law of crude oil in high water cut period of Xiqu oil field[J]. Science Technology and Engineering, 2015, 15(9): 176-179. | |
14 | 贾治渊. 高含水油田不加热集输边界条件研究[D]. 北京: 中国石油大学(北京), 2017. |
JIA Zhiyuan. Study on the boundary conditions of unheated gathering and transportation in high water cut oilfield[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
15 | 鲁晓醒, 檀为建, 胡雄翼, 等. 高含水期原油低温集输黏壁特性实验[J]. 油气储运, 2019, 38(11): 1245-1250. |
LU Xiaoxing, TAN Weijian, HU Xiongyi, et al. Experiment on wall sticking characteristics during the low-temperature gathering and transportation of crude oil in the period of high water cut[J]. Oil & Gas Storage and Transportation, 2019, 38(11): 1245-1250. | |
16 | CUI Yue, HUANG Qiyu, ZHANG Yan, et al. A new method for predicting wall sticking occurrence temperature of high water cut crude oil[J]. China Petroleum Processing & Petrochemical Technology, 2020, 22(2): 56-63. |
17 | 张燕. 高含水原油低温特性及集油边界条件研究[D]. 北京: 中国石油大学(北京), 2020. |
ZHANG Yan. Study on low temperature characteristics and low temperature gathering and transportation boundary conditions of high water-cut crude oil[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
18 | ZHANG Yan, HUANG Qiyu, CUI Yue, et al. Estimating wall sticking occurrence temperature based on adhesion force theory[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106778. |
19 | 黑树楠. 高含水含蜡原油管道集油温度下限研究[D]. 北京: 中国石油大学(北京), 2022. |
Shunan HEI. Study on the lower limit of oil gathering temperature of high water cut waxy crude oil pipeline[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
20 | 高晶霞. 特高含水期原油不加热集输试验[J]. 大庆石油学院学报, 2006, 30(6): 40-42, 124. |
GAO Jingxia. Unheated gathering and transportation tests in extra-high water cut period of Lamadian oilfield[J]. Journal of Daqing Petroleum Institute, 2006, 30(6): 40-42, 124. | |
21 | 孙彪. 大庆油田特高含水原油管输及油水分离特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2004. |
SUN Biao. The character researches of pipeline transportation and oil-water separation of heavy water cut in Daqing oil field[D]. Harbin: Harbin Engineering University, 2004. | |
22 | 董燕, 丁慎圆, 王梓栋, 等. 油田特高含水油水混合物低温流动特性的室内研究[J]. 油气田地面工程, 2015, 34(6): 20-22. |
DONG Yan, DING Shenyuan, WANG Zidong, et al. Laboratory study on low temperature flow characteristics of ultra-high water cut oil-water mixture in oilfield[J]. Oil-Gas Field Surface Engineering, 2015, 34(6): 20-22. | |
23 | 侯澄宇. 吉林油田高含水原油集输温度界限研究[D]. 北京: 中国石油大学(北京), 2020. |
HOU Chengyu. Study on the temperature limit of unheated gathering of waxy crude oils with high water cut in Jilin oilfield[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
24 | 崔悦. 高含水含蜡原油粘壁机理研究[D]. 北京: 中国石油大学(北京), 2020. |
CUI Yue. Study on the wall sticking mechanism of waxy crude oil during high water-cut period[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
25 | 时浩. 高含水稠油不加热集输方案研究[D]. 北京: 中国石油大学(北京), 2021. |
SHI Hao. Study on wall sticking characteristics of crude oil in high water cut with unheated gathering and transportation[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
26 | XU Peiyang, HE Limin, YANG Donghai, et al. Blocking characteristics of high water-cut crude oil in low-temperature gathering and transportation pipeline[J]. Chemical Engineering Research and Design, 2021, 173: 224-233. |
27 | 李晓宇. 高含水原油不加热集输边界条件研究[D]. 北京: 中国石油大学(北京), 2021. |
LI Xiaoyu. Study on unheated gathering and transportation boundary conditions of high water-cut crude oil[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
28 | 李苗. 原油管道清管器运动规律研究[D]. 北京: 中国石油大学(北京), 2018. |
LI Miao. Study on the pig motion in the waxy crude oil pipeline[D]. Beijing: China University of Petroleum (Beijing), 2018. |
[1] | LIU Wenchen, HUANG Qiyu, XIE Yan, LYU Yang, WANG Yijie, XU Zhenkang, HAN Jipu. Research progress of low-temperature gathering and transportation of high water cut crude oil [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5427-5440. |
[2] | FU Xuan, XING Xiaokai, LI Xinze. Corrosion characteristics of transportation pipelines in oil-water emulsion with CO2: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5353-5368. |
[3] | LI Xinze, ZOU Weijie, SUN Chen, FU Xuan, CHEN Qian, YUAN Liang, WANG Zicheng, XING Xiaokai, XIONG Xiaoqin, GUO Lianghui. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang oilfield [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833. |
[4] | LI Weidong, LI Yilong, TENG Lin, YIN Pengbo, HUANG Xin, LI Jiaqing, LUO Yu, JIANG Lilong. Research progress on ammonia energy technology and economy under "carbon emission peak" and "carbon neutrality" targets [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238. |
[5] | YAN Qing, ZHANG Yunfeng, ZHAO Minwei, SONG Ning, GAO Hui, ZHOU Jing. Feasibility analysis of large span compensation platform for LNG terminal [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 158-165. |
[6] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[7] | LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759. |
[8] | CHEN Weifeng, SHANG Juan, XING Baihui, WEI Haotian, GU Chaohua, HUA Zhengli. Discussion on 10% as a safe ratio of hydrogen mixing into natural gas grids [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493. |
[9] | MA Lihui, HE Limin, MI Xiangran, CHEN Shujiong, LI Xiaowei. Research progress of gas-liquid two-phase flow splitting character at impacting T-junction [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5919-5928. |
[10] | FAN Kaifeng, LI Si, HUANG Qiyu, WAN Yufei. Research progress on radial properties of wax deposits in crude oil pipelines [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3679-3692. |
[11] | HU Qian, ZHOU Shidong, GUO Yu, ZHANG Xueyan, WANG Jiaojiao, WANG Guodong, JI Haoyang. Influence of wax crystal precipitation on the phase equilibrium and induction characteristics of CO2 hydrate [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2452-2460. |
[12] | Nanjun LAI, Jun LI, Yiming LYU, Zhongrong LIU, Min LI, Dongyu QIAO, Jiawen DENG. Effect analysis of chemical paraffin removal and control technology in Ansai Oilfield [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4164-4174. |
[13] | Haixiao LIU, Limin HE, Jianheng CHEN, Xiaoming LUO, Songtao HE, Qingping LI. Research progress of pipeline pigs speed control technology [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2327-2335. |
[14] | Chengyuan HE,Shidong ZHOU,Tiancheng QIN,Wenwen ZHANG,Xiaofang LÜ,Shuli WANG,Haoyang JI. Induction characteristics of carbon dioxide hydrate formation under intermittent flow [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1348-1356. |
[15] | Chengyuan HE,Shidong ZHOU,Wenwen ZHANG,Qingzong ZHANG,Xiaofang LÜ,Shuli WANG,Shuhua ZHAO. Formation morphologies and plugging mechanisms of carbon dioxide hydrate under intermittent flow [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 842-850. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |