Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 260-266.DOI: 10.16085/j.issn.1000-6613.2023-1667
• Energy processes and technology • Previous Articles Next Articles
Received:
2023-09-20
Revised:
2023-10-10
Online:
2023-11-30
Published:
2023-10-25
作者简介:
贺美晋(1992—),女,博士,工程师,研究方向为炼油领域咨询及规划。E-mail:hemeijin.ripp@sinopec.com。
CLC Number:
HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266.
贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1667
分类 | 进料相态 | 分离原理 | 应用场景 | 优点 |
---|---|---|---|---|
蒸馏 | 液体 | 利用分子的沸点差 | 炼油常减压蒸馏、乙烯深冷分离 | 不需引入新的溶剂,杂质少 |
吸附分离 | 气体或液体 | 利用分子与吸附剂间结合力的强弱 | 提纯氢气、对二甲苯吸附分离、C5/C6正构烷烃吸附分离 | 分离度高、产品纯度高、收率高的优点 |
膜分离 | 气体或液体 | 利用分子动力学直径差异 | 乙烷/乙烯、二甲苯异构体 | 耗能低、对环境污染小、操作简单、效率高、无相变 |
萃取分离 | 液体 | 利用分子的极性差 | 芳烃分离、溶剂脱沥青、糠醛精制、催化裂化汽油脱硫、裂解汽油回收和苯乙烯提纯 | 适用于各种不同规模、生产周期短、便于连续操作 |
结晶分离 | 液体 | 利用分子在同一溶剂中的溶解度差异 | 对二甲苯结晶分离 | 产品纯度高、对原料组成要求低、工艺简捷易控、能耗低、安全性高、项目用地少 |
分类 | 进料相态 | 分离原理 | 应用场景 | 优点 |
---|---|---|---|---|
蒸馏 | 液体 | 利用分子的沸点差 | 炼油常减压蒸馏、乙烯深冷分离 | 不需引入新的溶剂,杂质少 |
吸附分离 | 气体或液体 | 利用分子与吸附剂间结合力的强弱 | 提纯氢气、对二甲苯吸附分离、C5/C6正构烷烃吸附分离 | 分离度高、产品纯度高、收率高的优点 |
膜分离 | 气体或液体 | 利用分子动力学直径差异 | 乙烷/乙烯、二甲苯异构体 | 耗能低、对环境污染小、操作简单、效率高、无相变 |
萃取分离 | 液体 | 利用分子的极性差 | 芳烃分离、溶剂脱沥青、糠醛精制、催化裂化汽油脱硫、裂解汽油回收和苯乙烯提纯 | 适用于各种不同规模、生产周期短、便于连续操作 |
结晶分离 | 液体 | 利用分子在同一溶剂中的溶解度差异 | 对二甲苯结晶分离 | 产品纯度高、对原料组成要求低、工艺简捷易控、能耗低、安全性高、项目用地少 |
分类 | 缺点 | 新型分离技术 |
---|---|---|
蒸馏 | 温度高、能耗大、高投资、占地大、易使原料中的热敏性物质失活及降解 | 恒沸精馏、萃取精馏、反应精馏和分子蒸馏 |
吸附分离 | 所用的设备结构复杂 | 分子印迹、生物吸附、泡沫吸附 |
膜分离 | 连续、致密、无缺陷的膜难以大面积生产 | 膜蒸馏、膜萃取、分子印迹膜 |
萃取分离 | 易引入新的溶剂,且萃取剂需二次分离,萃取操作效果较差 | 双水相萃取、凝胶萃取、微波萃取、固相萃取 |
结晶分离 | 对装备和过程的稳定性要求高 | 高压结晶法、熔融结晶法、汽提结晶法、溶液结晶法 |
分类 | 缺点 | 新型分离技术 |
---|---|---|
蒸馏 | 温度高、能耗大、高投资、占地大、易使原料中的热敏性物质失活及降解 | 恒沸精馏、萃取精馏、反应精馏和分子蒸馏 |
吸附分离 | 所用的设备结构复杂 | 分子印迹、生物吸附、泡沫吸附 |
膜分离 | 连续、致密、无缺陷的膜难以大面积生产 | 膜蒸馏、膜萃取、分子印迹膜 |
萃取分离 | 易引入新的溶剂,且萃取剂需二次分离,萃取操作效果较差 | 双水相萃取、凝胶萃取、微波萃取、固相萃取 |
结晶分离 | 对装备和过程的稳定性要求高 | 高压结晶法、熔融结晶法、汽提结晶法、溶液结晶法 |
1 | 贺朝辉, 杨玲, 李晋平, 等. 分子筛用于丙炔/丙烯的高效分离[J]. 石油学报(石油加工), 2019, 35(5): 855-859. |
HE Chaohui, YANG Ling, LI Jinping, et al. Molecular sieves for efficient separation of propyne/propylene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 855-859. | |
2 | 何永强, 王宏莉. 气体分离提纯应用变压吸附技术的相关研究[J]. 中国化工贸易, 2018, 10(4): 102. |
HE Yongqiang, WANG Hongli. Study on the application of pressure swing adsorption technology in gas separation and purification[J]. China Chemical Trade, 2018, 10(4): 102. | |
3 | WEI Ruicong, LIU Xiaowei, ZHOU Zongyao, et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation[J]. Science Advances, 2022, 8(7): eabm6741. |
4 | WANG Ziyang, WANG Wenjian, ZENG Tao, et al. Covalent-linking-enabled superior compatibility of ZIF-8 hybrid membrane for efficient propylene separation[J]. Advanced Materials, 2022, 34(6): 2104606. |
5 | LIU Yutao, WU Hong, LI Runlai, et al. MOF-COF “alloy” membranes for efficient propylene/propane separation[J]. Advanced Materials, 2022, 34(24): 2201423. |
6 | 吴涵竹, 司志豪, 秦培勇. 生物乙醇原位分离技术的研究进展[J]. 化工进展, 2022, 41(3): 1318-1329. |
WU Hanzhu, SI Zhihao, QIN Peiyong. Current progress of in situ bioethanol separation technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1318-1329. | |
7 | 袁国民, 从海峰, 李鑫钢. 重芳烃轻质化与分离研究进展[J]. 化学工业与工程, 2022, 39(3): 60-72. |
YUAN Guomin, CONG Haifeng, LI Xingang. Research progress in conversion to light aromatics and separation of heavy aromatics[J]. Chemical Industry and Engineering, 2022, 39(3): 60-72. | |
8 | 陈亮. 对二甲苯悬浮结晶分离技术进展[J]. 现代化工, 2020, 40(2): 57-61. |
CHEN Liang. Progress in separation of para-xylene by suspension crystallization technology[J]. Modern Chemical Industry, 2020, 40(2): 57-61. | |
9 | 吴青. 原油(重油)制化学品的技术及其进展——Ⅰ. 原油蒸汽裂解技术[J]. 炼油技术与工程, 2022, 52(4): 1-10. |
WU Qing. Technology and progress in crude oil to chemicals. Part one: Crude oil steam cracking technology[J]. Petroleum Refinery Engineering, 2022, 52(4): 1-10. | |
10 | 刘亭亭, 赵旭涛. 智能炼化企业建设 Ⅱ. 基于“分子管理”的智能优化[J]. 石化技术与应用, 2020, 38(3): 216-222. |
LIU Tingting, ZHAO Xutao. Development of smart refinery construction Ⅱ. Smart optimization based on “molecular management”[J]. Petrochemical Technology & Application, 2020, 38(3): 216-222. | |
11 | QUANN R J, JAFFE S B. Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures[J]. Industrial & Engineering Chemistry Research, 1992, 31(11): 2483-2497. |
12 | QUANN R J, JAFFE S B. Building useful models of complex reaction systems in petroleum refining[J]. Chemical Engineering Science, 1996, 51(10): 1615-1635. |
13 | 田松柏, 龙军, 刘泽龙. 分子水平重油表征技术开发及应用[J]. 石油学报(石油加工), 2015, 31(2): 282-292. |
TIAN Songbai, LONG Jun, LIU Zelong. Development and application of analytical techniques on heavy oil at the molecular level[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(2): 282-292. | |
14 | 田旺, 秦康, 胡元冲, 等. 石油分子重构技术的研究进展[J]. 石油学报(石油加工), 2022, 38(2): 449-466. |
TIAN Wang, QIN Kang, HU Yuanchong, et al. Research progress of petroleum molecular reconstruction technology[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(2): 449-466. | |
15 | 李宇龙, 刘维康, 郭彦, 等. 分子炼油技术展望[J]. 广东化工, 2014, 41(6): 111, 89. |
LI Yulong, LIU Weikang, GUO Yan, et al. Prospect of molecular refining technology[J]. Guangdong Chemical Industry, 2014, 41(6): 111, 89. | |
16 | 张海桐, 王广炜, 薛炳刚. 对分子炼油技术的认识和实践[J]. 化学工业, 2016, 34(4): 16-23. |
ZHANG Haitong, WANG Guangwei, XUE Binggang. Understanding and practice of molecular oil refining technology[J]. Chemical Industry, 2016, 34(4): 16-23. | |
17 | WANG, Hangzhou, LIU Yixin, JI Ye. Method, apparatus and system for whole-process optimization of molecular-level oil refinery processing, and storage medium: WO2021249330A1 [P]. 2021-12-16. |
18 | WU Q, WU J. Molecular engineering and molecular management for heavy petroleum fractions[C]//The 9th Symposium on Heavy Petroleum Fractions: Chemistry, Processing and Utilization. Beijing: 2016. |
19 | ZHANG Linzhou, HOU Zhen, HORTON Scott R, et al. Molecular representation of petroleum vacuum resid[J]. Energy & Fuels, 2014, 28(3): 1736-1749. |
20 | 史权, 张霖宙, 赵锁奇, 等. 炼化分子管理技术: 概念与理论基础[J]. 石油科学通报, 2016, 1(2): 270-278. |
SHI Quan, ZHANG Linzhou, ZHAO Suoqi, et al. Molecular management for petroleum refining: Concepts and fundamentals[J]. Petroleum Science Bulletin, 2016, 1(2): 270-278. | |
21 | 吴青. 石油分子工程及其管理的研究与应用(Ⅰ)[J]. 炼油技术与工程, 2017, 47(1): 1-9, 16. |
WU Qing. Research on molecular engineering and molecular management for petroleum and its applications(Part Ⅰ)[J]. Petroleum Refinery Engineering, 2017, 47(1): 1-9, 16. | |
22 | 吴青. 石油分子工程及其管理的研究与应用(Ⅰ)[J]. 炼油技术与工程, 2017, 47(1): 1-9, 16. |
WU Qing. Research on molecular engineering and molecular management for petroleum and its applications(Part Ⅰ)[J]. Petroleum Refinery Engineering, 2017, 47(1): 1-9, 16. | |
23 | 史权, 张亚和, 徐春明, 等. 石油组分高分辨质谱分析进展与展望[J]. 中国科学: 化学, 2014, 44(5): 694-700. |
SHI Quan, ZHANG Yahe, XU Chunming, et al. Progress and prospect on petroleum analysis by Fourier transform ion cyclotron resonance mass spectrometry[J]. Scientia Sinica Chimica), 2014, 44(5): 694-700. | |
24 | CHO Yunju, WITT Matthias, KIM Young Hwan, et al. Characterization of crude oils at the molecular level by use of laser desorption ionization fourier-transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2012, 84(20): 8587-8594. |
25 | 李硕凡, 吴建勋, 李运运, 等. 石油饱和烃分子组成分析方法综述[J]. 分析试验室, 2021, 40(12): 1472-1479. |
LI Shuofan, WU Jianxun, LI Yunyun, et al. Analytical methods for molecular characterization of saturated hydrocarbons in petroleum: A review[J]. Chinese Journal of Analysis Laboratory, 2021, 40(12): 1472-1479. | |
26 | 邱彤, 陈金财, 方舟. 基于结构导向集总的石油馏分分子重构模型[J]. 清华大学学报(自然科学版), 2016, 56(4): 424-429. |
QIU Tong, CHEN Jincai, FANG Zhou. Molecular reconstruction model for petroleum fractions based on structure oriented lumping[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(4): 424-429. | |
27 | REN Yu, LIAO Zuwei, SUN Jingyuan, et al. Molecular reconstruction: Recent progress toward composition modeling of petroleum fractions[J]. Chemical Engineering Journal, 2019, 357: 761-775. |
28 | 张霖宙, 赵锁奇, 史权, 等. 石油分子表征与分子层次模型构建: 前沿及挑战[J]. 中国科学: 化学, 2020, 50(2): 192-203. |
ZHANG Linzhou, ZHAO Suoqi, SHI Quan, et al. Molecular characterization and modeling of petroleum refining process: Frontiers and challenges[J]. Scientia Sinica Chimica), 2020, 50(2): 192-203. | |
29 | LIU Luyi. Molecular characterisation and modelling for refining processes[D]. Manchester: University of Manchester, 2015 |
30 | 刘艳伟, 赵书娟, 李彬. 用“分子炼油理念”指导石脑油加工优化[J]. 炼油技术与工程, 2014, 44(8): 21-24. |
LIU Yanwei, ZHAO Shujuan, LI Bin. Guiding naphtha processing optimization with concept of “molecular oil refining”[J]. Petroleum Refinery Engineering, 2014, 44(8): 21-24. | |
31 | 顾嘉华, 江洪波. 基于原油评价的石脑油馏分分子重构[J]. 化学反应工程与工艺, 2020, 36(1): 47-53. |
GU Jiahua, JIANG Hongbo. Molecular reconstruction of naphtha fractions based on crude oil calibration[J]. Chemical Reaction Engineering and Technology, 2020, 36(1): 47-53. | |
32 | 陈海, 周文娟, 陈夕松. 直馏石脑油分子快速分析及加工方案优化[J]. 炼油与化工, 2019, 30(4): 64-67. |
CHEN Hai, ZHOU Wenjuan, CHEN Xisong. Quick analysis of straight-Run naphtha molecule and processing plan optimization[J]. Refining and Chemical Industry, 2019, 30(4): 64-67. | |
33 | 曹君, 沈本贤, 刘纪昌, 等. 基于分子管理石脑油5A分子筛液相模拟移动床吸附分离工艺的优化[J]. 石油学报(石油加工), 2013, 29(2): 297-303. |
CAO Jun, SHEN Benxian, LIU Jichang, et al. Optimization of liquid-phase simulated moving bed technology for naphtha separation by 5A molecular sieve based on molecular management[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(2): 297-303. | |
34 | 刘军涛, 倪腾亚, 刘纪昌, 等. 基于分子管理的模拟移动床吸附分离石脑油中的正构烷烃[J]. 石油炼制与化工, 2014, 45(8): 71-76. |
LIU Juntao, NI Tengya, LIU Jichang, et al. Adsorption separation of normal paraffins from naphtha by simulated moving bed based on molecule-scale management[J]. Petroleum Processing and Petrochemicals, 2014, 45(8): 71-76. | |
35 | 吴庆玲, 刘纪昌, 颜培坤, 等. 基于分子管理的13X分子筛吸附分离石脑油中的芳烃[J]. 石油化工, 2018, 47(5): 401-407. |
WU Qingling, LIU Jichang, YAN Peikun, et al. Adsorption separation of aromatics from naphtha by 13X molecular sieve based on molecular management[J]. Petrochemical Technology, 2018, 47(5): 401-407. | |
36 | 宋杰. 基于分子炼油理念组合优化C8芳烃分离工艺[J]. 化工技术与开发, 2022, 51(4): 65-67. |
SONG Jie. Optimization of C8 aromatics separation process based on molecular refining concept[J]. Technology & Development of Chemical Industry, 2022, 51(4): 65-67. | |
37 | 樊小哲, 来锦波, 龙军, 等. BaX分子筛吸附C8芳烃作用机理[J]. 石油学报(石油加工), 2022, 38(5): 1064-1069. |
FAN Xiaozhe, LAI Jinbo, LONG Jun, et al. Adsorption mechanism of C8 aromatics adsorbed by BaX zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(5): 1064-1069. | |
38 | 凤孟龙, 龙军, 周涵, 等. 烃分子在H-FAU分子筛上吸附模拟研究[J]. 石油炼制与化工, 2017, 48(12): 5-11. |
FENG Menglong, LONG Jun, ZHOU Han, et al. Simulation study of hydrocarbon adsorption on H-FAU zeolite[J]. Petroleum Processing and Petrochemicals, 2017, 48(12): 5-11. | |
39 | 王子宗, 王基铭, 高立兵. 石化工业软件分类及自主工业软件成熟度分析[J]. 化工进展, 2021, 40(4): 1827-1836. |
WANG Zizong, WANG Jiming, GAO Libing. Classification and maturity analysis on petrochemical industrial software[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1827-1836. | |
40 | 高立兵, 吕中原, 索寒生, 等. 石油化工流程模拟软件现状与发展趋势[J]. 化工进展, 2021, 40(S2): 1-14. |
GAO Libing, Zhongyuan LYU, SUO Hansheng, et al. Market analysis and development trend of petrochemical process simulation software[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 1-14. | |
41 | 王子宗, 高立兵, 索寒生. 未来石化智能工厂顶层设计: 现状、对比及展望[J]. 化工进展, 2022, 41(7): 3387-3401. |
WANG Zizong, GAO Libing, SUO Hansheng. Designing petrochemical smart plant of the future: State of the art, comparison and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3387-3401. | |
42 | 李明丰, 吴昊, 沈宇, 等. “双碳”背景下炼化企业高质量发展路径探讨[J]. 石油学报(石油加工), 2022, 38(3): 493-499. |
LI Mingfeng, WU Hao, SHEN Yu, et al. High-quality development path for refining and chemical enterprises under the dual carbon background[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(3): 493-499. | |
43 | 许晓锋, 秦长毅, 张华, 等. 石油天然气工业绿色低碳工作实践和标准化探索[J]. 石油管材与仪器, 2022, 8(2): 1-4. |
XU Xiaofeng, QIN Changyi, ZHANG Hua, et al. Practice and standardization of green and low-carbon work in oil and natural gas industry[J]. Petroleum Tubular Goods & Instruments, 2022, 8(2): 1-4. | |
44 | 戴厚良, 陈建峰, 袁晴棠, 等. 石化工业高质量发展战略研究[J]. 中国工程科学, 2021, 23(5): 122-129. |
DAI Houliang, CHEN Jianfeng, YUAN Qingtang, et al. High-quality development of the petrochemical industry in China[J]. Strategic Study of CAE, 2021, 23(5): 122-129. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[3] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[4] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[5] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[6] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[7] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[8] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[9] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[10] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[11] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
[12] | ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng. Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594. |
[13] | PANG Nanjiong, WANG Xiaoling, LIAO Xuepin, SHI Bi. Separation of boron isotopes by collagen fibers-immobilized black wattle tannin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2616-2625. |
[14] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
[15] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |