Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3674-3683.DOI: 10.16085/j.issn.1000-6613.2022-1647
• Materials science and technology • Previous Articles Next Articles
YU Jingwen1,2(), SONG Luna3, LIU Yanchao4, LYU Ruidong2, WU Mengmeng1(), FENG Yu1, LI Zhong1, MI Jie1()
Received:
2022-09-06
Revised:
2022-11-18
Online:
2023-08-14
Published:
2023-07-15
Contact:
WU Mengmeng, MI Jie
于静文1,2(), 宋璐娜3, 刘砚超4, 吕瑞东2, 武蒙蒙1(), 冯宇1, 李忠1, 米杰1()
通讯作者:
武蒙蒙,米杰
作者简介:
于静文(1988—),男,博士研究生,研究方向为有机合成方法学和多孔有机聚合物的设计、合成及应用。E-mail:469165514@qq.com。
基金资助:
CLC Number:
YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683.
于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1647
吲哚基超交联聚合物 | 吲哚、FDA和FeCl3摩尔比 | 反应温度和时间 | 干燥方式 | 比表面积/ m2·g-1 |
---|---|---|---|---|
IN | 1∶3∶3 | 80℃,18h | 真空干燥 | 243 |
PIN | 1∶2∶2 | 80℃,18h | CO2超临界干燥 | 490 |
吲哚基超交联聚合物 | 吲哚、FDA和FeCl3摩尔比 | 反应温度和时间 | 干燥方式 | 比表面积/ m2·g-1 |
---|---|---|---|---|
IN | 1∶3∶3 | 80℃,18h | 真空干燥 | 243 |
PIN | 1∶2∶2 | 80℃,18h | CO2超临界干燥 | 490 |
吸附剂 | 准二级动力学模型 | 颗粒内扩散动力学模型 | |||||||
---|---|---|---|---|---|---|---|---|---|
第一阶段 | 第二阶段 | ||||||||
qe,cal/g·g-1 | k2/g·g-1·min-1 | R2 | kp/g·g-1·min-0.5 | C/g·g-1 | R2 | kp/g·g-1·min-0.5 | C/g·g-1 | R2 | |
In-HCP | 0.586 | 4.169 | 0.99994 | 0.05362 | 0.40918 | 0.85887 | 0.00391 | 0.55686 | 0.88358 |
AC | 0.562 | 5.164 | 0.99996 | 0.02223 | 0.47633 | 0.94975 | 0.00578 | 0.52570 | 0.89894 |
吸附剂 | 准二级动力学模型 | 颗粒内扩散动力学模型 | |||||||
---|---|---|---|---|---|---|---|---|---|
第一阶段 | 第二阶段 | ||||||||
qe,cal/g·g-1 | k2/g·g-1·min-1 | R2 | kp/g·g-1·min-0.5 | C/g·g-1 | R2 | kp/g·g-1·min-0.5 | C/g·g-1 | R2 | |
In-HCP | 0.586 | 4.169 | 0.99994 | 0.05362 | 0.40918 | 0.85887 | 0.00391 | 0.55686 | 0.88358 |
AC | 0.562 | 5.164 | 0.99996 | 0.02223 | 0.47633 | 0.94975 | 0.00578 | 0.52570 | 0.89894 |
吸附剂 | 消耗NaHSO3溶液体积/mL | 滤液中I2质量/mg | 被吸附I2质量/mg |
---|---|---|---|
In-HCP | 15.50 | 196.7 | 103.3 |
AC | 18.60 | 236.0 | 64.0 |
吸附剂 | 消耗NaHSO3溶液体积/mL | 滤液中I2质量/mg | 被吸附I2质量/mg |
---|---|---|---|
In-HCP | 15.50 | 196.7 | 103.3 |
AC | 18.60 | 236.0 | 64.0 |
吸附剂 | I2吸附量/g·g-1 | 参考文献 |
---|---|---|
HCOF-1 | 2.1±0.1 | [ |
CalCOP1 | 2.318 | [ |
CalCOP2 | 1.758 | [ |
CalCOP3 | 0.346 | [ |
CalCOP4 | 0.156 | [ |
In-HCP | 2.066 | 本文 |
AC | 1.280 | 本文 |
吸附剂 | I2吸附量/g·g-1 | 参考文献 |
---|---|---|
HCOF-1 | 2.1±0.1 | [ |
CalCOP1 | 2.318 | [ |
CalCOP2 | 1.758 | [ |
CalCOP3 | 0.346 | [ |
CalCOP4 | 0.156 | [ |
In-HCP | 2.066 | 本文 |
AC | 1.280 | 本文 |
1 | YU Yanan, YIN Zheng, CAO Lihui, et al. Organic porous solid as promising iodine capture materials[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102(5/6): 395-427. |
2 | SUN Qi, AGUILA Briana, MA Shengqian. Opportunities of porous organic polymers for radionuclide sequestration[J]. Trends in Chemistry, 2019, 1(3): 292-303. |
3 | TESFAY REDA Alemtsehay, PAN Meng, ZHANG Dongxiang, et al. Bismuth-based materials for iodine capture and storage: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105279. |
4 | XIE Wei, CUI Di, ZHANG Shuran, et al. Iodine capture in porous organic polymers and metal-organic frameworks materials[J]. Materials Horizons, 2019, 6(8): 1571-1595. |
5 | 张晓媛. 处理含碘放射性废水新型吸附剂的制备及组合工艺开发[D]. 天津: 天津大学, 2019. |
ZHANG Xiaoyuan. Synthesis of the novel adsorbent and development of an integrated process for treating iodine-containing radioactive wastewater[D]. Tianjin: Tianjin University, 2019. | |
6 | QIN Jianxian, ZHANG Wei, CHEN Yuantao, et al. Zinc-based triazole metal complexes for efficient iodine adsorption in water[J]. Environmental Science and Pollution Research, 2021, 28(22): 28797-28807. |
7 | GOGIA Alisha, Prasenjit DAS, MANDAL Sanjay K. Tunable strategies involving flexibility and angularity of dual linkers for a 3D metal-organic framework capable of multimedia iodine capture[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46107-46118. |
8 | Mahmoud EL-SHAHAT, ABDELHAMID Ahmed E, ABDELHAMEED R. Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan[J]. Carbohydrate Polymers, 2020, 231: 115742. |
9 | LIU Rong, ZHANG Wei, CHEN Yuantao, et al. Highly efficient adsorption of iodine under ultrahigh pressure from aqueous solution[J]. Separation and Purification Technology, 2020, 233: 115999. |
10 | 刘蓉, 张炜, 陈元涛, 等. ZIF材料对碘的吸附特性研究[J]. 无机材料学报, 2020, 35(3): 345-351. |
LIU Rong, ZHANG Wei, CHEN Yuantao, et al. Adsorption of iodine by ZIF materials[J]. Journal of Inorganic Materials, 2020, 35(3): 345-351. | |
11 | QU Guiyang, HAN Ying, QI Junjun, et al. Rapid iodine capture from radioactive wastewater by green and low-cost biomass waste derived porous silicon-carbon composite[J]. RSC Advances, 2021, 11(9): 5268-5275. |
12 | ZHANG Qingmei, ZHAI Tianlong, WANG Zhen, et al. Hyperporous carbon from triptycene-based hypercrosslinked polymer for iodine capture[J]. Advanced Materials Interfaces, 2019, 6(9): 1900249. |
13 | HUANG Min, YANG Li, LI Xiuyun, et al. An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media via the synergistic effects of cation-π and electrostatic forces[J]. Chemical Communications, 2020, 56(9): 1401-1404. |
14 | LIN Yunxiao, JIANG Xuanfeng, KIM Samuel T, et al. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water[J]. Journal of the American Chemical Society, 2017, 139(21): 7172-7175. |
15 | XIE Linhuang, ZHENG Zhiye, LIN Qiuyuan, et al. Calix[4]pyrrole-based crosslinked polymer networks for highly effective iodine adsorption from water[J]. Angewandte Chemie (International Ed in English), 2022, 61(1): e202113724. |
16 | ZHANG Zhizhong, LI Liang, AN Duo, et al. Triazine-based covalent organic polycalix[4]arenes for highly efficient and reversible iodine capture in water[J]. Journal of Materials Science, 2020, 55(4): 1854-1864. |
17 | AN Duo, LI Liang, ZHANG Zhizhong, et al. Amino-bridged covalent organic Polycalix[4]arenes for ultra efficient adsorption of iodine in water[J]. Materials Chemistry and Physics, 2020, 239: 122328. |
18 | CAO Jiajun, ZHU Huangtianzhi, SHANGGUAN Liqing, et al. A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution[J]. Polymer Chemistry, 2021, 12(24): 3517-3521. |
19 | CHEN Run, HU Tianliang, LI Yongqiang. Stable nitrogen-containing covalent organic framework as porous adsorbent for effective iodine capture from water[J]. Reactive and Functional Polymers, 2021, 159: 104806. |
20 | WANG Yinghui, ZHAO Meng, ZHANG Lili, et al. Covalent organic polymers are highly effective absorbers of iodine in water under ultra-high pressure[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(3): 1407-1415. |
21 | Arunabha SEN, SHARMA Shivani, DUTTA Subhajit, et al. Functionalized ionic porous organic polymers exhibiting high iodine uptake from both the vapor and aqueous medium[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34188-34196. |
22 | LI Bin, WANG Bin, HUANG Xiayang, et al. Terphen[n]arenes and quaterphen[n]arenes (n=3-6): One-pot synthesis, self-assembly into supramolecular gels, and iodine capture[J]. Angewandte Chemie International Edition, 2019, 58(12): 3885-3889. |
23 | ZHENG Baozhan, LIU Xiaoxia, HU Jing, et al. Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water[J]. Journal of Hazardous Materials, 2019, 368: 81-89. |
24 | LI Tianze, XU Hui. Recent progress of bioactivities, mechanisms of action, total synthesis, structural modifications and structure-activity relationships of indole derivatives: A review[J]. Mini Reviews in Medicinal Chemistry, 2022, 22(21): 2702-2725. |
25 | 高宇. 洗油中吲哚和喹啉的分离基础研究[D]. 太原: 太原理工大学, 2020. |
GAO Yu. Study on basic separation of indole and quinoline in washing oil[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
26 | SALEH Muhammad, LEE Han Myoung, Christian KEMP K, et al. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7325-7333. |
27 | 王艳. 吲哚基多孔材料的制备及对水中TNT吸附性能研究[D]. 北京: 中国工程物理研究院, 2020. |
WANG Yan. Preparation of indol-based porous materials and their adsorption properties of TNT in water[D]. Beijing: China Academy of Engineering Physics, 2020. | |
28 | CHEN Dongyang, FU Yu, YU Wenguang, et al. Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal[J]. Chemical Engineering Journal, 2018, 334: 900-906. |
29 | XIA Yanting, LI Yankai, GU Yuntao, et al. Adsorption desulfurization by hierarchical porous organic polymer of poly-methylbenzene with metal impregnation[J]. Fuel, 2016, 170: 100-106. |
30 | JIN Tian, AN Shuhao, YANG Xuejing, et al. Efficient adsorptive desulfurization by task-specific porous organic polymers[J]. AIChE Journal, 2016, 62(5): 1740-1746. |
31 | 李和国, 王立莹, 赵越, 等. 一类新型高效捕获碘蒸汽的低成本超交联微孔聚合物[J]. 兵器装备工程学报, 2021, 42(7): 269-273. |
LI Heguo, WANG Liying, ZHAO Yue, et al. A kind of novel low-cost hypercrosslinked polymers with efficient iodine adsorption[J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 269-273. | |
32 | HUANG Yalin, LI Wei, XU Yuwei, et al. Rapid iodine adsorption from vapor phase and solution by a nitrogen-rich covalent piperazine-triazine-based polymer[J]. New Journal of Chemistry, 2021, 45(12): 5363-5370. |
33 | WANG Yan, TAO Jian, XIONG Shaohui, et al. Ferrocene-based porous organic polymers for high-affinity iodine capture[J]. Chemical Engineering Journal, 2020, 380: 122420. |
34 | XU Meiyun, WANG Tao, ZHOU Lei, et al. Fluorescent conjugated mesoporous polymers with N,N-diethylpropylamine for the efficient capture and real-time detection of volatile iodine[J]. Journal of Materials Chemistry A, 2020, 8(4): 1966-1974. |
35 | WANG Chang, WANG Yu, GE Rile, et al. A 3D covalent organic framework with exceptionally high iodine capture capability[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2018, 24(3): 585-589. |
36 | LIN Jingxiang, LIANG Jun, FENG Jifei, et al. Iodine uptake and enhanced electrical conductivity in a porous coordination polymer based on cucurbit[6]uril[J]. Inorganic Chemistry Frontiers, 2016, 3(11): 1393-1397. |
37 | WALL S L D, MEADOWS E S, BARBOUR L, et al. Solution- and solid-state evidence for alkali metal cation-π interactions with indole, the side chain of tryptophan[J]. Journal of the American Chemical Society, 1999, 121: 5613-5614. |
38 | SCHLAMADINGER Diana E, DASCHBACH Megan M, GOKEL George W, et al. UV resonance Raman study of cation-π interactions in an indole crown ether[J]. Journal of Raman Spectroscopy: JRS, 2011, 42(4): 633-638. |
39 | SVENSSON Per H, KLOO Lars. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems[J]. Chemical Reviews, 2003, 103(5): 1649-1684. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[7] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[10] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[11] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[12] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[13] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[14] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[15] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |