Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3684-3694.DOI: 10.16085/j.issn.1000-6613.2022-1595
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
XU Peiyao1,2(), CHEN Biaoqi1,2, KANKALA Ranjith Kumar1,2, WANG Shibin1,2, CHEN Aizheng1,2()
Received:
2022-08-29
Revised:
2022-09-08
Online:
2023-08-14
Published:
2023-07-15
Contact:
CHEN Aizheng
徐沛瑶1,2(), 陈标奇1,2, KANKALA Ranjith Kumar1,2, 王士斌1,2, 陈爱政1,2()
通讯作者:
陈爱政
作者简介:
徐沛瑶(1995—),女,博士,讲师,研究方向为纳米医学。E-mail:xupeiyao@hqu.edu.cn。
基金资助:
CLC Number:
XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694.
徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1595
纳米载体名称 | 协同药物 | 肿瘤细胞类型 | 联合治疗 方式 | 参考 文献 |
---|---|---|---|---|
锰掺杂四氧化三铁纳米颗粒负载阿霉素 | 阿霉素 | 肝癌细胞HepG2 | 化学治疗 | [ |
聚多巴胺-四氧化三铁纳米颗粒负载10-羟基喜树碱 | 10-羟基喜树碱 | 食管癌细胞EC1及EC109 | 化学治疗 | [ |
四氧化三铁/氧化钆纳米颗粒负载顺铂 | 顺铂 | 前列腺癌细胞PC-3 | 化学治疗 | [ |
聚多肽包裹的四氧化三铁纳米颗粒及顺铂 | 顺铂 | 脑胶质瘤细胞U87 MG | 化学治疗 | [ |
铁基MOF修饰的四氧化三铁纳米颗粒负载IR780 | IR780 | 乳腺癌细胞4T1 | 光热治疗 | [ |
多孔聚多巴胺负载超顺磁性氧化铁纳米颗粒及索拉非尼 | 索拉非尼 | 结肠癌细胞HCT116 | 光热治疗 | [ |
硒化铋纳米片负载四氧化三铁纳米颗粒及金纳米颗粒 | 金纳米颗粒 | 乳腺癌细胞4T1 | 光热治疗 | [ |
卟啉接枝脂质体包裹四氧化三铁纳米颗粒 | 卟啉 | 结肠癌细胞HT-29 | 光动力治疗 | [ |
聚乳酸-羟基乙酸包裹四氧化三铁纳米颗粒及Ce6 | Ce6 | 乳腺癌细胞4T1 | 光动力治疗 | [ |
细胞膜包裹四氧化三铁纳米颗粒及Ce6 | Ce6 | 神经胶质瘤细胞C6 | 声动力治疗 | [ |
细胞膜包裹四氧化三铁纳米颗粒及siPD-L1 | siPD-L1 | 耐替莫唑胺小胶质瘤细胞GL261/TR | 免疫治疗 | [ |
红细胞膜包裹的四氧化三铁纳米颗粒及柳氮磺胺吡啶 | 柳氮磺胺吡啶 | 乳腺癌细胞4T1 | 免疫治疗 | [ |
铁离子多酚网络包覆的四氧化三铁纳米颗粒负载葡萄糖氧化酶及阿霉素前药 | 葡萄糖氧化酶、阿霉素前药 | 耐阿霉素乳腺癌细胞MCF-7/Adr | 化学治疗、饥饿治疗 | [ |
明胶包裹四氧化三铁纳米颗粒及阿霉素 | 阿霉素 | 肝癌细胞LM3 | 化学治疗、微波热疗 | [ |
纳米载体名称 | 协同药物 | 肿瘤细胞类型 | 联合治疗 方式 | 参考 文献 |
---|---|---|---|---|
锰掺杂四氧化三铁纳米颗粒负载阿霉素 | 阿霉素 | 肝癌细胞HepG2 | 化学治疗 | [ |
聚多巴胺-四氧化三铁纳米颗粒负载10-羟基喜树碱 | 10-羟基喜树碱 | 食管癌细胞EC1及EC109 | 化学治疗 | [ |
四氧化三铁/氧化钆纳米颗粒负载顺铂 | 顺铂 | 前列腺癌细胞PC-3 | 化学治疗 | [ |
聚多肽包裹的四氧化三铁纳米颗粒及顺铂 | 顺铂 | 脑胶质瘤细胞U87 MG | 化学治疗 | [ |
铁基MOF修饰的四氧化三铁纳米颗粒负载IR780 | IR780 | 乳腺癌细胞4T1 | 光热治疗 | [ |
多孔聚多巴胺负载超顺磁性氧化铁纳米颗粒及索拉非尼 | 索拉非尼 | 结肠癌细胞HCT116 | 光热治疗 | [ |
硒化铋纳米片负载四氧化三铁纳米颗粒及金纳米颗粒 | 金纳米颗粒 | 乳腺癌细胞4T1 | 光热治疗 | [ |
卟啉接枝脂质体包裹四氧化三铁纳米颗粒 | 卟啉 | 结肠癌细胞HT-29 | 光动力治疗 | [ |
聚乳酸-羟基乙酸包裹四氧化三铁纳米颗粒及Ce6 | Ce6 | 乳腺癌细胞4T1 | 光动力治疗 | [ |
细胞膜包裹四氧化三铁纳米颗粒及Ce6 | Ce6 | 神经胶质瘤细胞C6 | 声动力治疗 | [ |
细胞膜包裹四氧化三铁纳米颗粒及siPD-L1 | siPD-L1 | 耐替莫唑胺小胶质瘤细胞GL261/TR | 免疫治疗 | [ |
红细胞膜包裹的四氧化三铁纳米颗粒及柳氮磺胺吡啶 | 柳氮磺胺吡啶 | 乳腺癌细胞4T1 | 免疫治疗 | [ |
铁离子多酚网络包覆的四氧化三铁纳米颗粒负载葡萄糖氧化酶及阿霉素前药 | 葡萄糖氧化酶、阿霉素前药 | 耐阿霉素乳腺癌细胞MCF-7/Adr | 化学治疗、饥饿治疗 | [ |
明胶包裹四氧化三铁纳米颗粒及阿霉素 | 阿霉素 | 肝癌细胞LM3 | 化学治疗、微波热疗 | [ |
治疗方式 | 优势 | 缺点 | 治疗方式联合铁死亡治疗的特点 |
---|---|---|---|
化学治疗 | 普适性高、可操作性强、临床数据完善 | 全身毒副作用强,易引发耐药 | 通过降低化疗药物药量以减轻毒副作用;铁死亡可逆转多药耐药性以提高化学治疗的敏感性 |
光热治疗 | 低创、治疗时间短、毒副作用小 | 难以清除深层肿瘤,低温治疗效果不佳,高温治疗导致正常组织损伤 | 光热治疗可促进芬顿反应的速率进而促进铁死亡;铁死亡可抑制HSP蛋白的表达,实现低温光热治疗 |
光动力/声动力治疗 | 低创、高效、毒副作用小 | 难以清除深层肿瘤,肿瘤乏氧微环境导致疗效不佳 | 铁死亡可通过芬顿反应产生氧气,减轻肿瘤乏氧,提高光动力/声动力治疗效果 |
治疗方式 | 优势 | 缺点 | 治疗方式联合铁死亡治疗的特点 |
---|---|---|---|
化学治疗 | 普适性高、可操作性强、临床数据完善 | 全身毒副作用强,易引发耐药 | 通过降低化疗药物药量以减轻毒副作用;铁死亡可逆转多药耐药性以提高化学治疗的敏感性 |
光热治疗 | 低创、治疗时间短、毒副作用小 | 难以清除深层肿瘤,低温治疗效果不佳,高温治疗导致正常组织损伤 | 光热治疗可促进芬顿反应的速率进而促进铁死亡;铁死亡可抑制HSP蛋白的表达,实现低温光热治疗 |
光动力/声动力治疗 | 低创、高效、毒副作用小 | 难以清除深层肿瘤,肿瘤乏氧微环境导致疗效不佳 | 铁死亡可通过芬顿反应产生氧气,减轻肿瘤乏氧,提高光动力/声动力治疗效果 |
1 | STOCKWELL Brent R, FRIEDMANN ANGELI Jose Pedro Friedmann, BAYIR Hulya, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. |
2 | Katharina D'HERDE, KRYSKO Dmitri V. Oxidized PEs trigger death[J]. Nature Chemical Biology, 2017, 13(1): 4-5. |
3 | LIANG Yu, ZHANG Li, PENG Chao, et al. Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy[J]. Acta Pharmaceutica Sinica B, 2021, 11(10): 3231-3243. |
4 | LI Yingze, WEI Xueyan, TAO Feng, et al. The potential application of nanomaterials for ferroptosis-based cancer therapy[J]. Biomedical Materials, 2021, 16(4): 042013. |
5 | CHEN Xin, KANG Rui, KROEMER Guido, et al. Broadening horizons: The role of ferroptosis in cancer[J]. Nature Reviews Clinical Oncology, 2021, 18(5): 280-296. |
6 | SIMÃO M, CANCELA M L. Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms[J]. Biochemical Society Transactions, 2021, 49(2): 747-759. |
7 | STOCKWELL Brent R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. |
8 | SEIBT Tobias M, PRONETH Bettina, CONRAD Marcus. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radical Biology and Medicine, 2019, 133: 144-152. |
9 | 吕奕洁, 罗明芳, 杨彩霞, 等. 铁死亡纳米探针在肿瘤治疗中应用的研究进展[J]. 现代肿瘤医学, 2022, 30(14): 2624-2628. |
Yijie LYU, LUO Mingfang, YANG Caixia, et al. Research progress of iron death nano-probe in tumor treatment[J]. Journal of Modern Oncology, 2022, 30(14): 2624-2628. | |
10 | 季鹏, 张雅洁, 潘浩, 等. 铁死亡纳米制剂在肿瘤治疗应用中的研究进展[J]. 药学进展, 2022, 46(4): 303-309. |
JI Peng, ZHANG Yajie, PAN Hao, et al. Advances of nano-preparations for the treatment of ferroptosis in tumors[J]. Progress in Pharmaceutical Sciences, 2022, 46(4): 303-309. | |
11 | SHAN Xinzhu, LI Shumeng, SUN Bingjun, et al. Ferroptosis-driven nanotherapeutics for cancer treatment[J]. Journal of Controlled Release, 2020, 319: 322-332. |
12 | LIANG Chen, ZHANG Xinglin, YANG Mengsu, et al. Recent progress in ferroptosis inducers for cancer therapy[J]. Advanced Materials, 2019, 31(51): 1904197. |
13 | ZHENG Huizhen, JIANG Jun, XU Shujuan, et al. Nanoparticle-induced ferroptosis: Detection methods, mechanisms and applications[J]. Nanoscale, 2021, 13(4): 2266-2285. |
14 | 陈默冉, 周雪冰, 陈丹, 等. 铁死亡在肿瘤中的研究进展[J]. 生命科学, 2022, 34(9): 1108-1115. |
CHEN Moran, ZHOU Xuebing, CHEN Dan, et al. Research progress of ferroptosis in tumors[J]. Chinese Bulletin of Life Sciences, 2022, 34(9): 1108-1115. | |
15 | 秦苗, 徐梦洁, 黄棣, 等. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273. |
QIN Miao, XU Mengjie, HUANG Di, et al. Iron oxide nanoparticles in the application of magnetic resonance imaging[J]. Progress in Chemistry, 2020, 32(9): 1264-1273. | |
16 | XU Jianxiang, ZHANG Hanyuan, ZHANG Yifei, et al. Controllable synthesis of variable-sized magnetic nanocrystals self-assembled into porous nanostructures for enhanced cancer chemo-ferroptosis therapy and MR imaging[J]. Nanoscale Advances, 2022, 4(3): 782-791. |
17 | Ju-E CUN, PAN Yang, ZHANG Zhuangzhuang, et al. Photo-enhanced upcycling H2O2 into hydroxyl radicals by IR780-embedded Fe3O4@MIL-100 for intense nanocatalytic tumor therapy[J]. Biomaterials, 2022, 287: 121687. |
18 | ZHANG Guilong, ZHANG Li, SI Yuanchun, et al. Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery[J]. Chemical Engineering Journal, 2020, 388: 124269. |
19 | LIANG Xiaolong, CHEN Min, BHATTARAI Pravin, et al. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles[J]. ACS Nano, 2021, 15(12): 20164-20180. |
20 | ZHANG Yulin, FU Xiao, JIA Junsheng, et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43408-43421. |
21 | LIU Bao, JI Qifeng, CHENG Ying, et al. Biomimetic GBM-targeted drug delivery system boosting ferroptosis for immunotherapy of orthotopic drug-resistant GBM[J]. Journal of Nanobiotechnology, 2022, 20(1): 161. |
22 | CHEN Yukun, SU Mingliang, JIA Lijun, et al. Synergistic chemo-photothermal and ferroptosis therapy of polydopamine nanoparticles for esophageal cancer[J]. Nanomedicine, 2022, 17: 1115-1130. |
23 | GAO Zhiliang, HE Ting, ZHANG Peiyu, et al. Polypeptide-based theranostics with tumor-microenvironment-activatable cascade reaction for chemo-ferroptosis combination therapy[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20271-20280. |
24 | GUAN Qingqing, GUO Ruomi, HUANG Shihui, et al. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy[J]. Journal of Controlled Release, 2020, 320: 392-403. |
25 | WU Fengxia, CHEN Haoran, LIU Ruiqi, et al. An active-passive strategy for enhanced synergistic photothermal-ferroptosis therapy in the NIR-Ⅰ/Ⅱ biowindows[J]. Biomaterials Science, 2022, 10(4): 1104-1112. |
26 | CHEN Qifang, MA Xianbin, XIE Li, et al. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment[J]. Nanoscale, 2021, 13(9): 4855-4870. |
27 | ZHU Mingting, WU Pengying, LI Yan, et al. Synergistic therapy for orthotopic gliomas via biomimetic nanosonosensitizer-mediated sonodynamic therapy and ferroptosis[J]. Biomaterials Science, 2022, 10(14): 3911-3923. |
28 | JIANG Qin, WANG Kuang, ZHANG Xingyu, et al. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy[J]. Small, 2020, 16(22): 2001704. |
29 | CHEN Xiaolu, MA Rongying, FU Zhaoming, et al. Metal-phenolic networks-encapsulated cascade amplification delivery nanoparticles overcoming cancer drug resistance via combined starvation/chemodynamic/chemo therapy[J]. Chemical Engineering Journal, 2022, 442: 136221. |
30 | CHEN Minjiang, LI Jie, SHU Gaofeng, et al. Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization[J]. Journal of Nanobiotechnology, 2022, 20(1): 179. |
31 | ZHANG Caiyun, LENG Zhiguo, WANG Yinfeng, et al. PDGFB targeting biodegradable FePt alloy assembly for MRI guided starvation-enhancing chemodynamic therapy of cancer[J]. Journal of Nanobiotechnology, 2022, 20(1): 264. |
32 | YANG Baochan, DAI Zhichao, ZHANG Gaorui, et al. Ultrasmall ternary FePtMn nanocrystals with acidity-triggered dual-ions release and hypoxia relief for multimodal synergistic chemodynamic/photodynamic/photothermal cancer therapy[J]. Advanced Healthcare Materials, 2020, 9(21): 1901634. |
33 | JIAO Long, SEOW Joanne Yen Ru, SKINNER William Scott, et al. Metal-organic frameworks: Structures and functional applications[J]. Materials Today, 2019, 27: 43-68. |
34 | 郭弘, 李霞, 瞿鼎, 等. Fe基金属-有机框架在抗肿瘤药物递送方面的研究进展[J]. 药学学报, 2022, 57(5): 1252-1262. |
GUO Hong, LI Xia, QU Ding, et al. Research progress on Fe-based metal-organic frameworks in antitumor drug delivery[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1252-1262. | |
35 | XU Rui, YANG Jie, QIAN Yun, et al. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF[J]. Nanoscale Horizons, 2021, 6(4): 348-356. |
36 | YANG Jie, MA Siyu, XU Rui, et al. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy[J]. Journal of Controlled Release, 2021, 334: 21-33. |
37 | MU Min, WANG Yuelong, ZHAO Shasha, et al. Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent[J]. ACS Applied Bio Materials, 2020, 3(7): 4128-4138. |
38 | LIU Tao, LIU Wenlong, ZHANG Mingkang, et al. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy[J]. ACS Nano, 2018, 12(12): 12181-12192. |
39 | 王小妮, 魏娟娟, 欧阳津, 等. 功能化二氧化硅纳米材料在肿瘤治疗领域的应用[J]. 科学通报, 2022, 67(20): 2333-2351. |
WANG Xiaoni, WEI Juanjuan, OUYANG Jin, et al. Biofunctionalized mesoporous silica nanocarriers and the applications in tumor therapy[J]. Chinese Science Bulletin, 2022,67(20): 2333-2351. | |
40 | LI Danqi, REN Jingli, LI Jun, et al. Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform[J]. Chemical Engineering Journal, 2021, 419: 129557. |
41 | LIU Xin, SUI Baiyan, CAMARGO Pedro H C, et al. Tuning band gap of MnO2 nanoflowers by alkali metal doping for enhanced ferroptosis/phototherapy synergism in cancer[J]. Applied Materials Today, 2021, 23: 101027. |
42 | WEI Yawen, WANG Zhihua, YANG Jie, et al. Reactive oxygen species/photothermal therapy dual-triggered biomimetic gold nanocages nanoplatform for combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism[J]. Journal of Colloid and Interface Science, 2022, 606: 1950-1965. |
43 | VALLE Andrea C, YEH Chih Kuang, HUANG Yufen. Near infrared-activatable platinum-decorated gold nanostars for synergistic photothermal/ferroptotic therapy in combating cancer drug resistance[J]. Advanced Healthcare Materials, 2020, 9(20): e2000864. |
44 | WANG Xiaoyan, WU Ming, ZHANG Xiaolong, et al. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy[J]. Journal of Nanobiotechnology, 2021, 19(1): 204. |
45 | XU Tian, MA Yuying, YUAN Qinling, et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy[J]. ACS Nano, 2020, 14(3): 3414-3425. |
46 | Changjin OU, NA Weidan, GE Wei, et al. Biodegradable charge-transfer complexes for glutathione depletion induced ferroptosis and NIR-Ⅱ photoacoustic imaging guided cancer photothermal therapy[J]. Angewandte Chemie International Edition, 2021, 60(15): 8157-8163. |
47 | JIANG Wei, LUO Xingyu, WEI Lulu, et al. The sustainability of energy conversion inhibition for tumor ferroptosis therapy and chemotherapy[J]. Small, 2021, 17(38): 2102695. |
48 | MENG Xuan, DENG Jian, LIU Fang, et al. Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy[J]. Nano Letters, 2019, 19(11): 7866-7876. |
49 | XU Qingbo, ZHAN Guiting, ZHANG Zelong, et al. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors[J]. Theranostics, 2021, 11(4): 1937-1952. |
50 | GUSTAVSSON Bengt, Göran CARLSSON, MACHOVER David, et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer[J]. Clinical Colorectal Cancer, 2015, 14(1): 1-10. |
51 | WANG Hui, ZHANG Li, MIAO Zhaohua, et al. PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy via ferroptosis and ATM deficiency-triggered chemosensitization[J]. Materials Horizons, 2021, 8(8): 2216-2229. |
52 | CHENG Hsien-Jen, WU Haw-Te, CHIEN Chih-Te, et al. Corrosion-activated chemotherapeutic function of nanoparticulate platinum as a cisplatin resistance-overcoming prodrug with limited autophagy induction[J]. Small, 2016, 12(44): 6124-6133. |
53 | PAN Weilun, TAN Yong, MENG Wei, et al. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework[J]. Biomaterials, 2022, 283: 121449. |
54 | LONGLEY D B, JOHNSTON P G. Molecular mechanisms of drug resistance[J]. The Journal of Pathology, 2005, 205(2): 275-292. |
55 | PENG Haibao, ZHANG Xingcai, YANG Peng, et al. Defect self-assembly of metal-organic framework triggers ferroptosis to overcome resistance[J]. Bioactive Materials, 2023, 19: 1-11. |
56 | 黄星星, 刘颖, 张若男, 等. 温和光热疗法在肿瘤治疗中的研究进展[J]. 科学通报, 2020, 65(32): 3538-3550. |
HUANG Xingxing, LIU Ying, ZHANG Ruonan, et al. Research progress of mild photothermal therapy in cancer treatment[J]. Chinese Science Bulletin, 2020, 65(32): 3538-3550. | |
57 | CHANG Mengyu, HOU Zhiyao, WANG Man, et al. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy[J]. Angewandte Chemie International Edition, 2021, 60(23): 12971-12979. |
58 | CUI Xiao, LU Guihong, FANG Fang, et al. Iron self-boosting polymer nanoenzyme for low-temperature photothermal-enhanced ferrotherapy[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30274-30283. |
59 | ALZEIBAK Razan, MISHCHENKO Tatiana A, SHILYAGINA Natalia Y, et al. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future[J]. Journal for Immunotherapy of Cancer, 2021, 9(1): e001926. |
60 | Subin SON, KIM Ji Hyeon, WANG Xianwen, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy[J]. Chemical Society Reviews, 2020, 49(11): 3244-3261. |
61 | MISHCHENKO Tatiana A, BALALAEVA Irina V, VEDUNOVA Maria V, et al. Ferroptosis and photodynamic therapy synergism: Enhancing anticancer treatment[J]. Trends in Cancer, 2021, 7(6): 484-487. |
62 | ZHU Ting, SHI Leilei, YU Chunyang, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment[J]. Theranostics, 2019, 9(11): 3293-3307. |
63 | ZHOU Liqiang, DONG Caihong, DING Li, et al. Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy[J]. Nano Today, 2021, 39: 101212. |
64 | WAN Xiuyan, SONG Liqun, PAN Wei, et al. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy[J]. ACS Nano, 2020, 14(9): 11017-11028. |
65 | ZHANG Xiangkai, YANG Shengbing, WANG Qing, et al. Tailored theranostic nanoparticles cause efficient ferroptosis in head and neck squamous cell carcinoma through a reactive oxygen species “butterfly effect”[J]. Chemical Engineering Journal, 2021, 423: 130083. |
66 | LIU Peng, SHI Xinyi, PENG Ying, et al. Anti-PD-L1 DNAzyme loaded photothermal Mn2+/Fe3+ hybrid metal-phenolic networks for cyclically amplified tumor ferroptosis-immunotherapy[J]. Advanced Healthcare Materials, 2022, 11(8): 2102315. |
[1] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[2] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[3] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[5] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[6] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[7] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[8] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[9] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[10] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[11] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[12] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
[13] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[14] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[15] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |