Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3695-3707.DOI: 10.16085/j.issn.1000-6613.2022-1685
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
GUAN Hongling(), YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong()
Received:
2022-09-13
Revised:
2022-11-10
Online:
2023-08-14
Published:
2023-07-15
Contact:
HOU Cuihong
关红玲(), 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红()
通讯作者:
侯翠红
作者简介:
关红玲(1988—),女,讲师,硕士生导师,研究方向为固废资源高效利用。E-mail:guanhongling@zzu.edu.cn。
基金资助:
CLC Number:
GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707.
关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1685
木质素原料 | 制备方法 | 产品性质 | 药物 | 控释效果 | 主要机理 | 参考文献 |
---|---|---|---|---|---|---|
有机溶剂木质素 | 相分离法制备木质素纳米粒子 | 85.9nm纳米粒子 | 姜黄素 | 8h pH=1.2,8.7% pH=7.4,35% | 中性:酚羟基电离的静电排斥引起溶胀 | [ |
碱木质素 | 羧化改性、自组装、纳米复合 | 80nm纳米粒子复合水凝胶 | 白藜芦醇 | 7h pH=6.0,10% pH=8.5,80% | 碱性:羧基电离,静电斥力,水凝胶溶胀 | [ |
碱木质素 | 羧化改性 | 6mm片状 | 扑热息痛 | 20min pH=1.2,50% pH=7.2,75% | 中性:羧基离子化、带负电荷的离子相互排斥,水凝胶溶胀 | [ |
碱木质素 | 与磺酸钠自组装制备纳米胶束 | 半径为70nm胶束 | 布洛芬 | 24h pH=1.2,24.1% pH=7.4,96.1% | 中性:羧基电离,静电斥力,胶束结构的解离 | [ |
碱木质素 | 快速真空蒸发 | 100~400nm纳米空心球 | 布洛芬 | 24h pH=1.2,18% pH=7.5,94% | 碱性:羧基电离,静电斥力,纳米空心球的孔道扩张 | [ |
硫酸盐木质素 | 咪唑改性、乙酰化、真空蒸发 | 100nm纳米球 | 姜黄素 | 120h pH=5.7,76.82% pH=7.4,12.92% | 酸性:咪唑质子化,静电斥力,纳米球膨胀,胶束结构坍塌 | [ |
木质素原料 | 制备方法 | 产品性质 | 药物 | 控释效果 | 主要机理 | 参考文献 |
---|---|---|---|---|---|---|
有机溶剂木质素 | 相分离法制备木质素纳米粒子 | 85.9nm纳米粒子 | 姜黄素 | 8h pH=1.2,8.7% pH=7.4,35% | 中性:酚羟基电离的静电排斥引起溶胀 | [ |
碱木质素 | 羧化改性、自组装、纳米复合 | 80nm纳米粒子复合水凝胶 | 白藜芦醇 | 7h pH=6.0,10% pH=8.5,80% | 碱性:羧基电离,静电斥力,水凝胶溶胀 | [ |
碱木质素 | 羧化改性 | 6mm片状 | 扑热息痛 | 20min pH=1.2,50% pH=7.2,75% | 中性:羧基离子化、带负电荷的离子相互排斥,水凝胶溶胀 | [ |
碱木质素 | 与磺酸钠自组装制备纳米胶束 | 半径为70nm胶束 | 布洛芬 | 24h pH=1.2,24.1% pH=7.4,96.1% | 中性:羧基电离,静电斥力,胶束结构的解离 | [ |
碱木质素 | 快速真空蒸发 | 100~400nm纳米空心球 | 布洛芬 | 24h pH=1.2,18% pH=7.5,94% | 碱性:羧基电离,静电斥力,纳米空心球的孔道扩张 | [ |
硫酸盐木质素 | 咪唑改性、乙酰化、真空蒸发 | 100nm纳米球 | 姜黄素 | 120h pH=5.7,76.82% pH=7.4,12.92% | 酸性:咪唑质子化,静电斥力,纳米球膨胀,胶束结构坍塌 | [ |
1 | 严振宇, 陈远航, 吴珽, 等. 木质素功能材料的应用研究进展[J]. 应用化工, 2022, 51(2): 491-495, 500. |
YAN Zhenyu, CHEN Yuanhang, WU Ting, et al. Research progress in the application of lignin functional materials[J]. Applied Chemical Industry, 2022, 51(2): 491-495, 500. | |
2 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
3 | Sara GONZÁLEZ-GARCÍA, Beatriz GULLÓN. Editorial overview: Sustainable solutions for renewable wastes[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29: 100468. |
4 | MCKENDRY Peter. Energy production from biomass (Part 1): Overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46. |
5 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
6 | SUGIARTO Sigit, LEOW Yihao, TAN Chongli, et al. How far is Lignin from being a biomedical material?[J]. Bioactive Materials, 2022, 8: 71-94. |
7 | MAZIDI Zahra, JAVANMARDI Sanaz, NAGHIB Seyed Morteza, et al. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials[J]. Chemical Engineering Journal, 2022, 433: 134569. |
8 | DING Haitao, TAN Ping, FU Shiqin, et al. Preparation and application of pH-responsive drug delivery systems[J]. Journal of Controlled Release, 2022, 348: 206-238. |
9 | CHEN Jing, FAN Xiaolin, ZHANG Lidan, et al. Research progress in lignin-based slow/controlled release fertilizer[J]. ChemSusChem, 2020, 13(17): 4356-4366. |
10 | 吴纯纯, 徐佳锋, 韩伟胜, 等. 木质素在制备缓控释肥中的应用[J]. 现代农业科技, 2021(6): 176-182. |
WU Chunchun, XU Jiafeng, HAN Weisheng, et al. Application of lignin in preparation of slow/controlled-release fertilizer[J]. Modern Agricultural Science and Technology, 2021(6): 176-182. | |
11 | LU Jiajun, CHENG Mingyang, ZHAO Chao, et al. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives[J]. Industrial Crops and Products, 2022, 176: 114267. |
12 | DENG Yonghong, ZHAO Huajun, QIAN Yong, et al. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance[J]. Industrial Crops and Products, 2016, 87: 191-197. |
13 | ZHOU Mingsong, WANG Dongping, YANG Dongjie, et al. Avermectin loaded nanosphere prepared from acylated alkali lignin showed anti-photolysis property and controlled release performance[J]. Industrial Crops and Products, 2019, 137: 453-459. |
14 | ZHU Shiyun, XU Jun, WANG Bin, et al. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon[J]. Journal of Colloid and Interface Science, 2022, 625: 158-168. |
15 | VETTRAINO Anna Maria, ZIKELI Florian, SCARASCIA MUGNOZZA Giuseppe, et al. Lignin nanoparticles containing essential oils for controlling Phytophthora cactorum diseases[J]. Forest Pathology, 2022, 52(2): e12739. |
16 | CHEN Liheng, SHI Yunfeng, GAO Bo, et al. Lignin nanoparticles: Green synthesis in a γ-valerolactone/water binary solvent and application to enhance antimicrobial activity of essential oils[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 714-722. |
17 | LIN Yongan, PANG Yuxia, LI Zhiping, et al. Thermo-responsive behavior of enzymatic hydrolysis lignin in the ethanol/water mixed solvent and its application in the controlled release of pesticides[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(46): 15634-15640. |
18 | LI Yuanyuan, QIU Xueqing, QIAN Yong, et al. pH-responsive lignin-based complex micelles: Preparation, characterization and application in oral drug delivery[J]. Chemical Engineering Journal, 2017, 327: 1176-1183. |
19 | KUMAR Raj, BUTREDDY Arun, KOMMINENI Nagavendra, et al. Lignin: Drug/gene delivery and tissue engineering applications[J]. International Journal of Nanomedicine, 2021, 16: 2419-2441. |
20 | LIZUNDIA Erlantz, SIPPONEN Mika H, GRECA Luiz G, et al. Multifunctional lignin-based nanocomposites and nanohybrids[J]. Green Chemistry, 2021, 23(18): 6698-6760. |
21 | ALQAHTANI Mohammed S, ALQAHTANI Ali, Abdullah AL-THABIT, et al. Novel lignin nanoparticles for oral drug delivery[J]. Journal of Materials Chemistry B, 2019, 7(28): 4461-4473. |
22 | WANG Miao, YANG Dongjie, XU Qinghe, et al. Highly efficient evaporation method to prepare pH-responsive lignin-hollow-nanosphere with controllable size and its application in oral drug delivery[J]. Industrial Crops and Products, 2021, 162: 113230. |
23 | YI Conghua, XU Qinghe, YANG Dongjie, et al. A novel pH-responsive charge reversal nanospheres based on acetylated histidine-modified lignin for drug delivery[J]. Industrial Crops and Products, 2022, 186: 115193. |
24 | 陈德明, 王亭杰, 雨山江, 等. 缓释和控释尿素的研究与开发综述[J]. 化工进展, 2002, 21(7): 455-461. |
CHEN Deming, WANG Tingjie, YU Shanjiang, et al. Review on the research and development of control-release urea and slow-release urea[J]. Chemical Industry and Engineering Progress, 2002, 21(7): 455-461. | |
25 | 张福锁, 申建波, 危常州, 等. 绿色智能肥料:从原理创新到产业化实现[J]. 土壤学报, 2022, 59(4): 873-887. |
ZHANG Fusuo, SHEN Jianbo, WEI Changzhou, et al. Green intelligent fertilizer: From interdisciplinary innovation to industrialization realization[J]. Acta Pedologica Sinica, 2022, 59(4): 873-887. | |
26 | 钟晓雯. 木质素基胶束制备及其高效紫外防护应用研究[D]. 广州: 华南理工大学, 2017. |
ZHONG Xiaowen. Fabrication of lignin-based micelles and investigation of their excellent UV-blocking applications[D]. Guangzhou: South China University of Technology, 2017. | |
27 | FIGUEIREDO Patrícia, LINTINEN Kalle, HIRVONEN Jouni T, et al. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science, 2018, 93: 233-269. |
28 | Jędrzejczak Patryk, N.Collins Maurice, Jesionowski Teofil, et al. The role of lignin and lignin-based materials in sustainable construction—A comprehensive review[J]. International Journal of Biological Macromolecules, 2021, 187: 624-650.[PubMed] |
29 | SHU Fan, JIANG Bo, YUAN Yufeng, et al. Biological activities and emerging roles of lignin and lignin-based Products—A review[J]. Biomacromolecules, 2021, 22(12): 4905-4918. |
30 | 岳凤霞, 林敏生, 钱勇, 等. 木质素抗紫外辐射性能应用研究进展[J]. 林业工程学报, 2021, 6(2): 12-20. |
YUE Fengxia, LIN Minsheng, QIAN Yong, et al. Recent advances of anti-UV radiation of lignin[J]. Journal of Forestry Engineering, 2021, 6(2): 12-20. | |
31 | NDABA Busiswa, ROOPNARAIN Ashira, DARAMOLA Michael O, et al. Influence of extraction methods on antimicrobial activities of lignin-based materials: A review[J]. Sustainable Chemistry and Pharmacy, 2020, 18: 100342. |
32 | UGARTONDO Vanessa, MITJANS Montserrat, VINARDELL María Pilar. Comparative antioxidant and cytotoxic effects of lignins from different sources[J]. Bioresource Technology, 2008, 99(14): 6683-6687. |
33 | SUOTA Maria Juliane, KOCHEPKA Débora Merediane, GANTER MOURA Marlon Gualberto, et al. Lignin functionalization strategies and the potential applications of its derivatives—A review[J]. BioResources, 2021, 16(3): 6471-6511. |
34 | LU Fung-Jou, CHU Li-Hsueh, Rung-Jiun GAU. Free radical-scavenging properties of lignin[J]. Nutrition and Cancer, 1998, 30(1):31-38. |
35 | BARAPATRE Anand, MEENA Avtar Singh, MEKALA Sowmya, et al. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica[J]. International Journal of Biological Macromolecules, 2016, 86: 443-453. |
36 | FIGUEIREDO Patrícia, LINTINEN Kalle, KIRIAZIS Alexandros, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells[J]. Biomaterials, 2017, 121: 97-108. |
37 | NADA A M A, EL-DIWANY A I, ELSHAFEI A M. Infrared and antimicrobial studies on different lignins[J]. Acta Biotechnologica, 1989, 9(3): 295-298. |
38 | YANG Weijun, FORTUNATI Elena, GAO Daqian, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3502-3514. |
39 | ZHANG Yiwen, YUAN Bo, ZHANG Yuqing, et al. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability[J]. Chemical Engineering Journal, 2020, 400: 125984. |
40 | Joana GIL-CHÁVEZ, PADHI Sidhant Satya Prakash, LEOPOLD Claudia S, et al. Application of Aquasolv Lignin in ibuprofen-loaded pharmaceutical formulations obtained via direct compression and wet granulation[J]. International Journal of Biological Macromolecules, 2021, 174: 229-239. |
41 | CIOLACU Diana, OPREA Ana Maria, ANGHEL Narcis, et al. New cellulose-lignin hydrogels and their application in controlled release of polyphenols[J]. Materials Science & Engineering C, 2012, 32(3): 452-463. |
42 | CULEBRAS Mario, BARRETT Anthony, PISHNAMAZI Mahboubeh, et al. Wood-derived hydrogels as a platform for drug-release systems[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(6): 2515-2522.[PubMed] |
43 | DAI Lin, LIU Rui, HU Liqiu, et al. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8241-8249. |
44 | ZHANG Daxia, DU Jiang, WANG Rui, et al. Core/shell dual-responsive nanocarriers via iron-mineralized electrostatic self-assembly for precise pesticide delivery[J]. Advanced Functional Materials, 2021, 31(34): 2102027. |
45 | RIZWAN Muhammad, YAHYA Rosiyah, HASSAN Aziz, et al. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications[J]. Neural Plasticity, 2017, 9(4): E137. |
46 | 易聪华, 徐青荷, 王淼, 等. pH敏感性生物基纳米载药粒子的研究进展[J]. 化工进展, 2021, 40(6): 3411-3420. |
YI Conghua, XU Qinghe, WANG Miao, et al. Research progress of pH-sensitive biopolymer nanocarriers[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3411-3420. | |
47 | ZHU Weiyan, LU Jinshun, DAI Lin. Multifunctional pH-responsive sprayable hydrogel based on chitosan and lignin-based nanoparticles[J]. Particle & Particle Systems Characterization, 2018, 35(12): 1800145. |
48 | PISHNAMAZI Mahboubeh, HAFIZI Hamid, SHIRAZIAN Saeed, et al. Design of controlled release system for paracetamol based on modified lignin[J]. Polymers, 2019, 11(6): E1059. |
49 | 管士强, 王好斌, 侯翠红, 等. 智能新型肥料研究进展[J]. 现代化工, 2022, 42(1): 46-50. |
GUAN Shiqiang, WANG Haobin, HOU Cuihong, et al. Research progress in new smart fertilizer[J]. Modern Chemical Industry, 2022, 42(1): 46-50. | |
50 | JIAO Gaojie, PENG Pai, SUN Shaolong, et al. Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer[J]. International Journal of Biological Macromolecules, 2019, 127: 544-554. |
51 | Felipe RAMÍREZ-CANO. Slow-release effect of N-functionalized kraft lignin tested with Sorghum over two growth periods[J]. Bioresource Technology, 2001, 76(1): 71-73. |
52 | LI Tao, Shaoyu LYU, WANG Zengqiang, et al. Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers[J]. Science of the Total Environment, 2021, 765: 142745. |
53 | Carmen GARCÍA, VALLEJO Antonio, DIÉZ José A, et al. Nitrogen use efficiency with the application of controlled release fertilizers coated with Kraft pine lignin[J]. Soil Science and Plant Nutrition, 1997, 43(2): 443-449. |
54 | DOS SANTOS Antonio C S, HENRIQUE Humberto M, CARDOSO Vicelma L, et al. Slow release fertilizer prepared with lignin and poly(vinyl acetate) bioblend[J]. International Journal of Biological Macromolecules, 2021, 185: 543-550. |
55 | ZHANG Shugang, FU Xiangju, TONG Zhaohui, et al. Lignin—Clay nanohybrid biocomposite-based double-layer coating materials for controllable-release fertilizer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18957-18965. |
56 | SIPPONEN Mika Henrikki, ROJAS Orlando J, PIHLAJANIEMI Ville, et al. Calcium chelation of lignin from pulping spent liquor for water-resistant slow-release urea fertilizer systems[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1054-1061. |
57 | PANG Wancheng, HOU Dejia, WANG Huan, et al. Preparation of microcapsules of slow-release NPK compound fertilizer and the release characteristics[J]. Journal of the Brazilian Chemical Society, 2018: 2397-2404. |
58 | LI Tao, Shaoyu LYU, YAN Jia, et al. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10941-10950. |
59 | YOON Ho Young, PHONG Nguyen Thanh, Eun Nam JOE, et al. Crop root exudate composition-dependent disassembly of lignin-Fe-hydroxyapatite supramolecular structures: A better rhizosphere sensing platform for smart fertilizer development[J]. Advanced Sustainable Systems, 2021, 5(8): 2100113. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[3] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[4] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[5] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[6] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[7] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[8] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[9] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[10] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[11] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[12] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[13] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[14] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[15] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |