Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 5074-5084.DOI: 10.16085/j.issn.1000-6613.2021-2371
• Resources and environmental engineering • Previous Articles Next Articles
YANG Chengyu(), LIU Min, YUAN Lin, HU Xuan, CHEN Ying()
Received:
2021-11-18
Revised:
2022-02-07
Online:
2022-09-27
Published:
2022-09-25
Contact:
CHEN Ying
通讯作者:
陈滢
作者简介:
杨程嵛(1998—),男,硕士研究生,研究方向为污水处理。E-mail:374424355@qq.com。
基金资助:
CLC Number:
YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084.
杨程嵛, 刘敏, 袁林, 胡璇, 陈滢. 竹基纤维素纳米纤丝交联改性后对水体中低浓度磷的吸附[J]. 化工进展, 2022, 41(9): 5074-5084.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2371
准一级 | 准二级 | Elovich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
q1 | k1 | R2 | q2 | k2 | R2 | a | b | R2 | ||
7.97 | 0.005 | 0.989 | 9.70 | 5.589 | 0.995 | 0.11 | 0.47 | 0.993 |
准一级 | 准二级 | Elovich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
q1 | k1 | R2 | q2 | k2 | R2 | a | b | R2 | ||
7.97 | 0.005 | 0.989 | 9.70 | 5.589 | 0.995 | 0.11 | 0.47 | 0.993 |
第一阶段 | 第二阶段 | 第三阶段 | |||||
---|---|---|---|---|---|---|---|
k1 | R2 | k2 | R2 | k3 | R2 | ||
0.534 | 0.977 | 0.241 | 0.995 | 0.017 | 0.726 |
第一阶段 | 第二阶段 | 第三阶段 | |||||
---|---|---|---|---|---|---|---|
k1 | R2 | k2 | R2 | k3 | R2 | ||
0.534 | 0.977 | 0.241 | 0.995 | 0.017 | 0.726 |
Langmuir | Freundlich | Temkin | Toth |
---|---|---|---|
qm=15.90 | Kf=6.22 | KT =7.33 | T=0.92 |
KL=1.00 | 1/nf=0.36 | bT =682.21 | bT =0.77 |
R2=0.998 | R2=0.961 | R2=0.978 | R2=0.983 |
Langmuir | Freundlich | Temkin | Toth |
---|---|---|---|
qm=15.90 | Kf=6.22 | KT =7.33 | T=0.92 |
KL=1.00 | 1/nf=0.36 | bT =682.21 | bT =0.77 |
R2=0.998 | R2=0.961 | R2=0.978 | R2=0.983 |
吸附材料 | C0/mg·L-1 | qe/mg·g-1 | 参考文献 |
---|---|---|---|
Al2O3/PVA改性材料 | 2.5 | 0.54~0.56 | [ |
Al2O3/CA改性材料 | 2.5 | 2.00~2.40 | [ |
Fe/Mn改性生物炭 | 0.5 | 0.91~0.94 | [ |
FeZr改性生物炭 | 10.0 | 7.50~10.00 | [ |
改性煤矸石 | 50.0 | 6.00~17.00 | [ |
CNFs-PAE-Fe | 1.0 10.0 50.0 | 5.59~8.68 14.76~15.83 32.36~47.20 | 本研究 |
吸附材料 | C0/mg·L-1 | qe/mg·g-1 | 参考文献 |
---|---|---|---|
Al2O3/PVA改性材料 | 2.5 | 0.54~0.56 | [ |
Al2O3/CA改性材料 | 2.5 | 2.00~2.40 | [ |
Fe/Mn改性生物炭 | 0.5 | 0.91~0.94 | [ |
FeZr改性生物炭 | 10.0 | 7.50~10.00 | [ |
改性煤矸石 | 50.0 | 6.00~17.00 | [ |
CNFs-PAE-Fe | 1.0 10.0 50.0 | 5.59~8.68 14.76~15.83 32.36~47.20 | 本研究 |
1 | 马鑫雨, 杨盼, 张曼, 等. 湖泊沉积物磷钝化材料的研究进展[J]. 湖泊科学, 2022, 34(1): 1-17. |
MA Xinyu, YANG Pan, ZHANG Man, et al. Advances in researches on phosphorous inactivation materials in lake sediment[J]. Journal of Lake Sciences, 2022, 34(1): 1-17. | |
2 | WU Baile, FANG Liping, FORTNER John D, et al. Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites[J]. Water Research, 2017, 126: 179-188. |
3 | 胡晓雅. 开发去除水体中低浓度磷的复合吸附材料[D]. 泉州: 华侨大学, 2018. |
HU Xiaoya. Development of composite adsorbents to remove low concentration of phosphorus in water[D]. Quanzhou: Huaqiao University, 2018. | |
4 | YAN Yubo, SUN Xiuyun, MA Fangbian, et al. Removal of phosphate from wastewater using alkaline residue[J]. Journal of Environmental Sciences, 2014, 26(5): 970-980. |
5 | 刘宁, 陈小光, 崔彦召, 等. 化学除磷工艺研究进展[J]. 化工进展, 2012, 31(7): 1597-1603. |
LIU Ning, CHEN Xiaoguang, CUI Yanzhao, et al. Research progress of chemical dephosphorization process[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1597-1603. | |
6 | 王文超, 张华, 张欣. 化学除磷在城市污水处理中的应用[J]. 水科学与工程技术, 2008(1): 14-16. |
WANG Wenchao, ZHANG Hua, ZHANG Xin. Chemical phosphorus removal in municipal wastewater[J]. Water Sciences and Engineering Technology, 2008(1): 14-16. | |
7 | 徐丰果, 罗建中, 凌定勋. 废水化学除磷的现状与进展[J]. 工业水处理, 2003, 23(5): 18-20. |
XU Fengguo, LUO Jianzhong, LING Dingxun. Present and prospects of the removal of phosphorus from wastewater chemically[J]. Industrial Water Treatment, 2003, 23(5): 18-20. | |
8 | SEO Byung Soo, PARK Chong Min, SONG Unsook, et al. Nitrate and phosphate removal potentials of three willow species and a bald cypress from eutrophic aquatic environment[J]. Landscape and Ecological Engineering, 2010, 6(2): 211-217. |
9 | SHI Jing, PODOLA Björn, MELKONIAN Michael. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study[J]. Journal of Applied Phycology, 2007, 19(5): 417-423. |
10 | 李小林. La(OH)3负载的磁性阳离子水凝胶对水中低浓度磷的吸附特征及其放大制备研究[D]. 北京: 北京林业大学,2020 . |
LI Xiaolin. Study on the low concentration phosphate adsorption in aqueous solution by La(OH)3 loaded magnetic cationic hydrogel: performance, mechanism and adsorbent scale-up preparation[D]. Beijing: Beijing Forestry University, 2020 . | |
11 | GENZ Arne, Anja KORNMÜLLER, JEKEL Martin. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide[J]. Water Research, 2004, 38(16): 3523-3530. |
12 | 王秀云. 废水除磷技术的研究进展[J]. 安徽农学通报, 2009, 15(16): 92-93, 129. |
WANG Xiuyun. Study progress of phosphorus removal from wastewater[J]. Anhui Agricultural Science Bulletin, 2009, 15(16): 92-93, 129. | |
13 | 戴晓婧, 覃柳琪, 张杉杉, 等. 竹基纳米纤维素晶体稳定的Pickering乳液制备及其形态和稳定性研究[J]. 纤维素科学与技术, 2018, 26(4): 52-59. |
DAI Xiaojing, QIN Liuqi, ZHANG Shanshan, et al. Investigation of the morphology and stability of Pickering emulsion stabilized by bamboo cellulose nanocrystal[J]. Journal of Cellulose Science and Technology, 2018, 26(4): 52-59. | |
14 | 王汉坤. 竹基纳米纤维素的制备、表征及应用[D]. 北京: 中国林业科学研究院, 2013. |
WANG Hankun. Preparation, characterization and application of nano cellulose fibrils from bamboo[D]. Beijing: Chinese Academy of Forestry, 2013. | |
15 | 覃发梅, 邱学青, 孙川, 等. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(7): 3390-3401. |
QIN Famei, QIU Xueqing, SUN Chuan, et al. Research progress in nanocellulose for the removal of heavy metal ions in water[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3390-3401. | |
16 | TANG Juntao, SONG Yang, ZHAO Feiping, et al. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal[J]. Carbohydrate Polymers, 2019, 208: 404-412. |
17 | CUI Guirong, LIU Min, CHEN Ying, et al. Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater[J]. Carbohydrate Polymers, 2016, 154: 40-47. |
18 | 王婷庭, 刘敏, 崔桂榕, 等. 五种改性纳米纤维素吸附剂的制备及除磷性能比较[J]. 化工进展, 2017, 36(11): 4279-4285. |
WANG Tingting, LIU Min, CUI Guirong, et al. Preparation of several modified cellulose nanofiber hybrid adsorbents and performance comparison of phosphate removals[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4279-4285. | |
19 | LUO Ying, LIU Min, CHEN Ying, et al. Preparation and regeneration of iron-modified nanofibres for low-concentration phosphorus-containing wastewater treatment[J]. Royal Society Open Science, 2019, 6(9): 190764. |
20 | 董凤霞, 戴磊. 纤维素纳米纤丝基水凝胶及其在废水处理中的应用进展[J]. 中国造纸, 2020, 39(5): 63-69. |
DONG Fengxia, DAI Lei. Research progress on cellulose nanofibrils-based hydrogel and its application in wastewater treatment[J]. China Pulp & Paper, 2020, 39(5): 63-69. | |
21 | ZHANG Wei, ZHANG Yaan, LU Canhui, et al. Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water[J]. Journal of Materials Chemistry, 2012, 22(23): 11642-11650. |
22 | XU Zhaoyang, JIANG Xiangdong, ZHOU Huan, et al. Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)-cellulose nanofiber (CNF) aerogels as effective oil absorbents[J]. Cellulose, 2018, 25(2): 1217-1227. |
23 | 宋飞宇, 魏琪, 马浩, 等. 羧甲基半纤维素的制备及其与湿强剂PAE的联用[J]. 中国造纸, 2019, 38(3): 9-15. |
SONG Feiyu, WEI Qi, MA Hao, et al. Preparation of carboxymethyl hemicellulose and its application with polyamide epichlorohydrin resin as wet strength additive[J]. China Pulp & Paper, 2019, 38(3): 9-15. | |
24 | 关莹. 竹材半纤维素基软材料的制备及性能研究[D]. 北京: 北京林业大学, 2015. |
GUAN Ying. Preparation and properties of bamboo hemicellulose-based soft materials[D]. Beijing: Beijing Forestry University, 2015. | |
25 | LU Lanxin, LIU Min, CHEN Ying, et al. Effective removal of tetracycline antibiotics from wastewater using practically applicable iron(Ⅲ)-loaded cellulose nanofibres[J]. Royal Society Open Science, 2021, 8(8): 210336. |
26 | ZHANG Xiaofang, LU Zhixing, ZHAO Jiangqi, et al. Exfoliation/dispersion of low-temperature expandable graphite in nanocellulose matrix by wet co-milling[J]. Carbohydrate Polymers, 2017, 157: 1434-1441. |
27 | LI Qingye, XUE Zhouhang, ZHAO Jiangqi, et al. Mass production of high thermal conductive boron nitride/nanofibrillated cellulose composite membranes[J]. Chemical Engineering Journal, 2020, 383: 123101. |
28 | ZHANG Xiaofang, ZHAO Jiangqi, HE Xu, et al. Mechanically robust and highly compressible electrochemical supercapacitors from nitrogen-doped carbon aerogels[J]. Carbon, 2018, 127: 236-244. |
29 | 宋飞宇. 羧甲基半纤维素的制备及其与PAE湿强剂联用作用机制研究[D]. 广州: 华南理工大学, 2019. |
SONG Feiyu. Study on the preparation of carboxymethyl hemicellulose and the mechanism of its combination with PAE agent[D]. Guangzhou: South China University of Technology, 2019. | |
30 | AFRIDI Muhammad Naveed, LEE Won Hee, KIM Jong Oh. Application of synthesized bovine serum albumin-magnetic iron oxide for phosphate recovery[J]. Journal of Industrial and Engineering Chemistry, 2020, 86: 113-122. |
31 | MAHMOUD Esawy, BAROUDY Ahmed EL, Nehal ALI, et al. Spectroscopic studies on the phosphorus adsorption in salt-affected soils with or without nano-biochar additions[J]. Environmental Research, 2020, 184: 109277. |
32 | KIM Ju Hyeong, PARK Gi Dae, YANG Su Hyun, et al. Uniquely structured iron hydroxide-carbon nanospheres with yolk-shell and hollow structures and their excellent lithium-ion storage performances[J]. Applied Surface Science, 2021, 542: 148637. |
33 | LIU Fuyang, LI Junjia, LI Qiliang, et al. High pressure synthesis, structure, and multiferroic properties of two perovskite compounds Y2FeMnO6 and Y2CrMnO6 [J]. Dalton Transactions, 2014, 43(4): 1691-1698. |
34 | XIA Wenjing, GUO Lixin, YU Linqian, et al. Phosphorus removal from diluted wastewaters using a La/C nanocomposite-doped membrane with adsorption-filtration dual functions[J]. Chemical Engineering Journal, 2021, 405: 126924. |
35 | DENG Shubo, LIU Han, ZHOU Wei, et al. Mn-Ce oxide as a high-capacity adsorbent for fluoride removal from water[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1360-1366. |
36 | JANG Hyun Min, YOO Seunghyun, CHOI Yong Keun, et al. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar[J]. Bioresource Technology, 2018, 259: 24-31. |
37 | 仇付国, 陈丽霞, 孙瑶, 等. 含铝活性炭污泥对磷的吸附特性研究[J]. 环境污染与防治, 2016, 38(5): 1-5, 11. |
QIU Fuguo, CHEN Lixia, SUN Yao, et al. Study of adsorption characteristics of phosphorus by aluminium-containing activated carbon sludge[J]. Environmental Pollution & Control, 2016, 38(5): 1-5, 11. | |
38 | 孙婷婷, 高菲, 林莉, 等. 复合金属改性生物炭对水体中低浓度磷的吸附性能[J]. 环境科学, 2020, 41(2): 784-791. |
SUN Tingting, GAO Fei, LIN Li, et al. Adsorption of low-concentration phosphorus from water by composite metal modified biochar[J]. Environmental Science, 2020, 41(2): 784-791. | |
39 | 郑宁捷, 唐登勇, 胡洁丽, 等. 混合改性芦苇生物炭对水中磷酸盐的吸附特性研究[J]. 中国农村水利水电, 2018(6): 97-101, 107. |
ZHENG Ningjie, TANG Dengyong, HU Jieli, et al. Study on the adsorption characteristics of mixed modified reed biochar on phosphate in water[J]. China Rural Water and Hydropower, 2018(6): 97-101, 107. | |
40 | 张梦瑶. 改性煤矸石吸附剂的制备及其去除水中磷的研究[D]. 成都: 西南交通大学, 2020. |
ZHANG Mengyao. Preparation of modified coal gangue adsorbent and study on phosphorus removal in water[D]. Chengdu: Southwest Jiaotong University,2020 . | |
41 | NING Ping, BART Hans Jörg, LI Bing, et al. Phosphate removal from wastewater by model-La(Ⅲ) zeolite adsorbents[J]. Journal of Environmental Sciences, 2008, 20(6): 670-674. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[9] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[10] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[11] | LIU Shuqiong, WU Fangfang, LIU Ruilai, XU Zhenyi. Preparation and characterization of a novel polylactic acid/chitosan/graphene oxide/aspirin drug-loaded biomimetic composite scaffold [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4362-4371. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |