Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 5065-5073.DOI: 10.16085/j.issn.1000-6613.2021-2381
• Resources and environmental engineering • Previous Articles Next Articles
YANG Liu1(), WANG Mingwei2, ZHANG Yaobin1()
Received:
2021-11-19
Revised:
2022-03-01
Online:
2022-09-27
Published:
2022-09-25
Contact:
ZHANG Yaobin
通讯作者:
张耀斌
作者简介:
杨柳(1999—),女,硕士研究生,研究方向为厌氧水处理。E-mail:yangliuun@163.com。
基金资助:
CLC Number:
YANG Liu, WANG Mingwei, ZHANG Yaobin. Magnetite-loaded biochar for enhanced anaerobic microbial treatment of 2,4-dichlorophenol wastewater[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5065-5073.
杨柳, 王名威, 张耀斌. 磁铁矿负载生物炭强化厌氧微生物处理2,4-二氯苯酚废水[J]. 化工进展, 2022, 41(9): 5065-5073.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2381
菌属 | 相对丰度(50mg·L-1 2,4-DCP)/% | 相对丰度(100mg·L-1 2,4-DCP)/% | ||||||
---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | |
Methanothrix | 43.24 | 25.74 | 33.63 | 34.64 | 32.74 | 20.06 | 38.17 | 36.32 |
Methanobacterium | 34.72 | 61.63 | 50.26 | 50.49 | 45.46 | 67.02 | 41.20 | 49.29 |
Methanocorpusculum | 0.62 | 5.83 | 5.34 | 4.91 | 4.23 | 2.84 | 3.73 | 1.86 |
Methanosarcina | 14.94 | 3.14 | 3.06 | 4.42 | 4.63 | 3.40 | 6.30 | 2.05 |
Methanomassiliicoccus | 4.13 | 2.42 | 6.98 | 4.81 | 7.29 | 2.58 | 5.65 | 2.84 |
菌属 | 相对丰度(50mg·L-1 2,4-DCP)/% | 相对丰度(100mg·L-1 2,4-DCP)/% | ||||||
---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | |
Methanothrix | 43.24 | 25.74 | 33.63 | 34.64 | 32.74 | 20.06 | 38.17 | 36.32 |
Methanobacterium | 34.72 | 61.63 | 50.26 | 50.49 | 45.46 | 67.02 | 41.20 | 49.29 |
Methanocorpusculum | 0.62 | 5.83 | 5.34 | 4.91 | 4.23 | 2.84 | 3.73 | 1.86 |
Methanosarcina | 14.94 | 3.14 | 3.06 | 4.42 | 4.63 | 3.40 | 6.30 | 2.05 |
Methanomassiliicoccus | 4.13 | 2.42 | 6.98 | 4.81 | 7.29 | 2.58 | 5.65 | 2.84 |
菌属 | 相对丰度(50mg·L-1 2,4-DCP)/% | 相对丰度(100mg·L-1 2,4-DCP)/% | ||||||
---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | |
Desulfovibrio | 8.99 | 12.97 | 11.34 | 13.63 | 3.21 | 8.61 | 5.87 | 9.28 |
Petrimonas | 2.10 | 1.61 | 7.17 | 5.57 | 0.92 | 0.88 | 4.07 | 1.50 |
Cloacibacillus | 1.50 | 4.95 | 4.84 | 5.82 | 1.51 | 1.77 | 0.88 | 1.02 |
Mesotoga | 0.32 | 1.87 | 3.65 | 2.05 | 1.58 | 3.22 | 12.34 | 14.54 |
Syntrophorhabdus | 1.42 | 0.80 | 0.33 | 0.36 | 2.19 | 0.65 | 0.17 | 0.40 |
Longilinea | 0.22 | 0.07 | 0.02 | 0.33 | 0.22 | 0.08 | 0.03 | 0.36 |
Leptolinea | 0.05 | 0.17 | 0.23 | 0.27 | 0.01 | 0.11 | 0.10 | 0.12 |
Ignavibacterium | 0.04 | 0.07 | 0.06 | 0.06 | 0.12 | 0.59 | 0.32 | 1.24 |
菌属 | 相对丰度(50mg·L-1 2,4-DCP)/% | 相对丰度(100mg·L-1 2,4-DCP)/% | ||||||
---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | |
Desulfovibrio | 8.99 | 12.97 | 11.34 | 13.63 | 3.21 | 8.61 | 5.87 | 9.28 |
Petrimonas | 2.10 | 1.61 | 7.17 | 5.57 | 0.92 | 0.88 | 4.07 | 1.50 |
Cloacibacillus | 1.50 | 4.95 | 4.84 | 5.82 | 1.51 | 1.77 | 0.88 | 1.02 |
Mesotoga | 0.32 | 1.87 | 3.65 | 2.05 | 1.58 | 3.22 | 12.34 | 14.54 |
Syntrophorhabdus | 1.42 | 0.80 | 0.33 | 0.36 | 2.19 | 0.65 | 0.17 | 0.40 |
Longilinea | 0.22 | 0.07 | 0.02 | 0.33 | 0.22 | 0.08 | 0.03 | 0.36 |
Leptolinea | 0.05 | 0.17 | 0.23 | 0.27 | 0.01 | 0.11 | 0.10 | 0.12 |
Ignavibacterium | 0.04 | 0.07 | 0.06 | 0.06 | 0.12 | 0.59 | 0.32 | 1.24 |
1 | OLANIRAN Ademola O, IGBINOSA Etinosa O. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes[J]. Chemosphere, 2011, 83(10): 1297-1306. |
2 | KOHRING G W, ROGERS J E, WIEGEL J. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures[J]. Applied and Environmental Microbiology, 1989, 55(2): 348-353. |
3 | 车碧宁, 张耀斌. 纳米Fe3O4强化厌氧处理含酚废水研究[J]. 水处理技术, 2020, 46(3): 124-127, 134. |
CHE Bining, ZHANG Yaobin. Study on anaerobic advanced treatment of phenol wastewater by Fe3O4 nanoparticles[J]. Technology of Water Treatment, 2020, 46(3): 124-127, 134. | |
4 | LOVLEY Derek R, ANDERSON Robert T. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface[J]. Hydrogeology Journal, 2000, 8(1): 77-88. |
5 | LOVLEY D R, PHILLIPS E J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480. |
6 | LOVLEY D R, PHILLIPS E J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J]. Applied and Environmental Microbiology, 1986, 51(4): 683-689. |
7 | WEBER Karrie A, ACHENBACH Laurie A, COATES John D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10): 752-764. |
8 | LI F B, LI X M, ZHOU S G, et al. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J]. Environmental Pollution, 2010, 158(5): 1733-1740. |
9 | WEI Na, FINNERAN Kevin T. Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe(Ⅲ) reduction does not always inhibit complete dechlorination[J]. Environmental Science & Technology, 2011, 45(17): 7422-7430. |
10 | 卢晓霞, 李广贺, 张旭, 等. 不同氧化还原条件下氯乙烯的微生物脱氯[J]. 环境科学, 2002, 23(2): 29-33. |
LU Xiaoxia, LI Guanghe, ZHANG Xu, et al. Dechlorination of chlorinated ethenes under different redox conditions[J]. Chinese Journal of Enviromental Science, 2002, 23(2): 29-33. | |
11 | GORBY Y A. Bacterial nanowires: electrically conductive filaments and their implications for energy transformation and distribution in natural and engineered systems[C]//2006 Bio Micro and Nanosystems Conference. January 15-18, 2006, San Francisco, CA, USA. IEEE, 2006: 20. |
12 | SHI Liang, DONG Hailiang, REGUERA Gemma, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. |
13 | ZHAO Zhiqiang, ZHANG Yaobin, WOODARD T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191: 140-145. |
14 | ZHAO Zhiqiang, ZHANG Yaobin, CHEN Shuo, et al. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor[J]. Scientific Reports, 2014, 4: 6658. |
15 | PETROUTSOS Dimitris, KATAPODIS Petros, SAMIOTAKI Martina, et al. Detoxification of 2, 4-dichlorophenol by the marine microalga tetraselmis marina[J]. Phytochemistry, 2008, 69(3): 707-714. |
16 | ZHAO Zhiqiang, ZHANG Yaobin, WANG Liying, et al. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion[J]. Scientific Reports, 2015, 5: 11094. |
17 | LI Shiyang, CAO Yi, BI Cancan, et al. Promoting electron transfer to enhance anaerobic treatment of azo dye wastewater with adding Fe(OH)3 [J]. Bioresource Technology, 2017, 245: 138-144. |
18 | DESANTIS T Z, HUGENHOLTZ P, LARSEN N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7): 5069-5072. |
19 | 王申宛, 郑晓燕, 校导, 等. 生物炭的制备、改性及其在环境修复中的应用进展[J]. 化工进展, 2020, 39(S2): 352-361. |
WANG Shenwan, ZHENG Xiaoyan, XIAO Dao, et al. Research progress of production,modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361. | |
20 | ZAITSEV V S, FILIMONOV D S, PRESNYAKOV I A, et al. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions[J]. Journal of Colloid and Interface Science, 1999, 212(1): 49-57. |
21 | YANG Dongxing, VELAMAKANNI Aruna, Gülay BOZOKLU, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145-152. |
22 | Laura KLÜPFEL, KEILUWEIT Marco, KLEBER Markus, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611. |
23 | 唐柱云, 陆光华. 苯酚、2, 4-二氯酚与苯胺类化合物联合毒性效益[J]. 环境科技, 2014, 27(4): 18-22, 51. |
TANG Zhuyun, LU Guanghua. Joint toxicity effect of phenol or 2, 4-dichlorophenol and anilines[J]. Environmental Science and Technology, 2014, 27(4): 18-22, 51. | |
24 | MORI Koji, HARAYAMA Shigeaki. Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61: 138-143. |
25 | ROTARU Amelia Elena, SHRESTHA Pravin Malla, LIU Fanghua, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415. |
26 | 江心白. 生物电化学体系中硝基芳香族化合物的强化还原机制[D]. 南京: 南京理工大学, 2016. |
JIANG Xinbai. The mechanism of enhanced reductive degradation of nitroaromatic compounds in bioelectrochemical system[D]. Nanjing: Nanjing University of Science and Technology, 2016. | |
27 | HANIA Wajdi Ben, POSTEC Anne, Thomas AÜLLO, et al. Mesotoga infera sp. nov., a mesophilic member of the order Thermotogales, isolated from an underground gas storage aquifer[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 8): 3003-3008. |
28 | FRANCHI Oscar, ROSENKRANZ Francisca, CHAMY Rolando. Key microbial populations involved in anaerobic degradation of phenol and p-cresol using different inocula[J]. Electronic Journal of Biotechnology, 2018, 35: 33-38. |
29 | YAMADA Takeshi, IMACHI Hiroyuki, OHASHI Akiyoshi, et al. Bellilinea caldifistulae Gen. nov., sp. nov. and Longilinea arvoryzae Gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the Phylum Chloroflexi isolated from methanogenic propionate-degrading consortia[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(10): 2299-2306. |
30 | WARD Lewis M, HEMP James, PACE Laura A, et al. Draft genome sequence of leptolinea tardivitalis YMTK-2, a mesophilic anaerobe from the Chloroflexi class Anaerolineae [J]. Genome Announcements, 2015, 3(6): e01356. |
31 | LI Yang, REN Chongyang, ZHAO Zisheng, et al. Enhancing anaerobic degradation of phenol to methane via solubilizing Fe(Ⅲ) oxides for dissimilatory iron reduction with organic chelates[J]. Bioresource Technology, 2019, 291: 121858. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[3] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[4] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[5] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[6] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[7] | HU Zhaoyan, ZHANG Jingxin, HE Yiliang. Catalytic pyrolysis of polypropylene plastics and product properties with Fe-loaded sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 631-640. |
[8] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
[9] | WANG Shuyan, ZHANG Xinbo, PENG Anping, LIU Yang, HAO NGO HUU, GUO Wenshan, WEN Haitao. Research progress and challenges in recovery of nitrogen and phosphorus nutrients from water by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5459-5469. |
[10] | SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458. |
[11] | HUANG Xia, HE Yingying, ZHANG Yidie, YANG Dianhai, DAI Xiaohu, XIE Li. Research progress on enhancing resource utilization of organic solid waste aerobic composting based on biochar [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4544-4554. |
[12] | PAN Weiliang, WU Qiye, CAO Yunpeng, ZHANG Xianbing, GU Li, HE Qiang. Improvement of nitrate removal and nitrogen selectivity by the synergy of nZVI/BC and (Cu-Pd)/BC [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 981-989. |
[13] | XIAO Cancan, YANG Yafei, ZHANG Yaobin. Goethite promotes the removal of nitrogen and carbon in the anaerobic digestion of waste activated sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6689-6697. |
[14] | CHEN Yiping, HUANG Yaoyi, ZHENG Chaohong. Research progress of collagen-derived carbon in water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6606-6614. |
[15] | SONG Shaohua, XU Jinlan, SONG Xiaoqiao, YU Yuan. Preparation of magnetic biochar and its application in polluted water [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6586-6605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |