Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 5995-6009.DOI: 10.16085/j.issn.1000-6613.2024-0783
• Invited review • Previous Articles
SHAO Bin(), LI Su, MA Rongting, XIE Zhicheng, GAO Zihao, JIA Zhonghao, WANG Wenhui, SUN Zheyi, HU Jun()
Received:
2024-05-10
Revised:
2024-06-16
Online:
2024-12-07
Published:
2024-11-15
Contact:
HU Jun
邵斌(), 栗粟, 马榕廷, 谢志成, 高梓皓, 贾中昊, 王文慧, 孙哲毅, 胡军()
通讯作者:
胡军
作者简介:
邵斌(1996—),博士,助理研究员,研究方向为二氧化碳捕集与转化。E-mail:shaobin@ ecust.edu.cn。
基金资助:
CLC Number:
SHAO Bin, LI Su, MA Rongting, XIE Zhicheng, GAO Zihao, JIA Zhonghao, WANG Wenhui, SUN Zheyi, HU Jun. Catalytic hydrogenation of carbonate minerals: A promising pathway to carbon neutrality for industries with intensive carbon emissions[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 5995-6009.
邵斌, 栗粟, 马榕廷, 谢志成, 高梓皓, 贾中昊, 王文慧, 孙哲毅, 胡军. 高碳排工业“碳中和”潜在途径[J]. 化工进展, 2024, 43(11): 5995-6009.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0783
1 | 张锁江, 张香平, 葛蔚, 等. 工业过程绿色低碳技术[J]. 中国科学院院刊, 2022, 37(4): 511-521. |
ZHANG Suojiang, ZHANG Xiangping, GE Wei, et al. Carbon neutral transformative technologies for industrial process[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 511-521. | |
2 | LIU Zhu, DENG Zhu, HE Gang, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth and Environment, 2022, 3(2): 141-155. |
3 | HAN Rui, WANG Yang, XING Shuang, et al. Progress in reducing calcination reaction temperature of calcium-looping CO2 capture technology: A critical review[J]. Chemical Engineering Journal, 2022, 450: 137952. |
4 | NHUCHHEN Daya R, Song P SIT, LAYZELL David B. Decarbonization of cement production in a hydrogen economy[J]. Applied Energy, 2022, 317: 119180. |
5 | FENNELL Paul S, DAVIS Steven J, MOHAMMED Aseel. Decarbonizing cement production[J]. Joule, 2021, 5(6): 1305-1311. |
6 | FAN Jingli, LI Zezheng, HUANG Xi, et al. A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage[J]. Nature Communications, 2023, 14: 5972. |
7 | 邵斌, 孙哲毅, 章云, 等. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151. |
SHAO Bin, SUN Zheyi, ZHANG Yun, et al. Recent progresses in CO2 to syngas and high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. | |
8 | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. | |
9 | CASTELVECCHI Davide. How the hydrogen revolution can help save the planet-and how it can’t[J]. Nature, 2022, 611: 440-443. |
10 | 自然资源保护协会(NRDC). 面向碳中和的氢冶金发展战略研究[R]. |
(2023-06-25). . | |
The Natural Resources Defense Council(NRDC).Research on the development strategy of hydrogen metallurgy for carbon neutrality[R]. (2023-06-25). http://www.nrdc.cn/Public/uploads/2023-06-25/6497aa6685787.pdf. | |
11 | United States Department of Energy (DOE), Industrial decarbonization of energy intensive sector[R]. (2022-09-12). https://www.energy.gov/eere/amo/articles/industrial-decarbonization-energy-intensive-sectors. |
12 | GIARDINI A A, SALOTTI C A, LAKNER J F. Synthesis of graphite and hydrocarbons by reaction between calcite and hydrogen[J]. Science, 1968, 159(3812): 317-319. |
13 | RELLER A, PADESTE C, HUG P. Formation of organic carbon compounds from metal carbonates[J]. Nature, 1987, 329: 527-529. |
14 | SUN Shuzhuang, CHEN Zheng, XU Yikai, et al. Potassium-promoted limestone for preferential direct hydrogenation of carbonates in integrated CO2 capture and utilization[J]. JACS Au, 2023, 4(1): 72-79. |
15 | SUN Shuzhuang, WANG Yuanyuan, ZHAO Xiaotong, et al. One step upcycling CO2 from flue gas into CO using natural stone in an integrated CO2 capture and utilisation system[J]. Carbon Capture Science & Technology, 2022, 5: 100078. |
16 | SHAO Bin, ZHU Yuanming, HU Jun, et al. Chemical engineering solution for carbon neutrality in cement industry: Tailor a pathway from inevitable CO2 emission into syngas[J]. Chemical Engineering Journal, 2024, 483: 149098. |
17 | WANG Iwei, LI Dan, WANG Shihui, et al. Limestone hydrogenation combined with reverse water-gas shift reaction under fluidized and iso-thermal conditions using MFB-TGA-MS[J]. Chemical Engineering Journal, 2023, 472: 144822. |
18 | 徐明, 邵明飞, 刘清雅, 等. 电解水制氢耦合碳酸盐还原展望[J]. 化工进展, 2022, 41(3): 1121-1124. |
XU Ming, SHAO Mingfei, LIU Qingya, et al. Hydrogen generation from electrochemical water splitting coupling carbonate reduction[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1121-1124. | |
19 | HALMANN M, STEINFELD A. Thermoneutral coproduction of calcium oxide and syngas by combined decomposition of calcium carbonate and partial oxidation/CO2-reforming of methane[J]. Energy & Fuels, 2003, 17(3): 774-778. |
20 | STEINFELD A. Solar combined thermochemical processes for CO2 mitigation in the iron, cement, and syngas industries[J]. Energy, 1994, 19(10): 1077-1081. |
21 | 尹倩, 宋慧婷, 徐明, 等. 碳酸盐炼制共热耦合甲烷干重整制高附加值化学品发展展望[J]. 物理化学学报, 2023, 39(3): 7-15. |
YIN Qian, SONG Huiting, XU Ming, et al. Thermal decomposition of carbonates coupled with dry reforming of methane to synthesize high-value products: A perspective[J]. Acta Physico-Chimica Sinica, 2023, 39(3): 7-15. | |
22 | JIANG Peng, LI Lin, ZHAO Guanhan, et al. Reductive calcination of calcium carbonate in hydrogen and methane: A thermodynamic analysis on different reaction routes and evaluation of carbon dioxide mitigation potential[J]. Chemical Engineering Science, 2023, 276: 118823. |
23 | SAEIDI Samrand, NAJARI Sara, HESSEL Volker, et al. Recent advances in CO2 hydrogenation to value-added products—Current challenges and future directions[J]. Progress in Energy and Combustion Science, 2021, 85: 100905. |
24 | LUX S, BALDAUF-Sommerbauer G, SIEBENHOFER M. Hydrogenation of inorganic metal carbonates: A review on its potential for carbon dioxide utilization and emission reduction[J]. ChemSusChem, 2018, 11(19): 3357-3375. |
25 | Georg BALDAUF-SOMMERBAUER, Susanne LUX, ANISER Wolfgang, et al. Reductive calcination of mineral magnesite: Hydrogenation of carbon dioxide without catalysts[J]. Chemical Engineering & Technology, 2016, 39(11): 2035-2041. |
26 | SHI Sulong, YU Jiachen, PAN Yue, et al. Hydrogenation of calcium carbonate to carbon monoxide and methane[J]. Fuel, 2023, 354: 129385. |
27 | JAGADEESAN D, ESWARAMOORTHY M, RAO C N R. Investigations of the conversion of inorganic carbonates to Methane[J]. ChemSusChem. 2009, 2(9): 878-882. |
28 | YOSHIDA Noritetsu, HATTORI Takeshi, KOMAI Eiji, et al. Methane formation by metal-catalyzed hydrogenation of solid calcium carbonate[J]. Catalysis Letters, 1999, 58(2): 119-122. |
29 | LV Zongze, DENG Tao, GAO Chang, et al. Promotion of active H-assisted CaCO3 conversion for integrated CO2 capture and methanation[J]. Chemical Engineering Journal, 2024, 489: 151427. |
30 | MESTERS Carl, RAHIMI Nazanin, VAN DER SLOOT Dennis, et al. Direct reduction of magnesium carbonate to methane[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(33): 10977-10989. |
31 | GIARDINI A A, SALOTTI C A. Kinetics and relations in the calcite-hydrogen reaction and relations in the dolomite-hydrogen and siderite-hydrogen systems[J]. 1969, 54(7/8): 1151-1172. |
32 | TSUNETO Akira, KUDO Akihiko, SAITO Nobuhiro, et al. Hydrogenation of solid state carbonates[J]. Chemistry Letters, 1992, 21(5): 831-834. |
33 | SHEN Tao, WU Jiawen, LIU Qingya, et al. Hydrogenation of CaCO3 for methane by a liquid organic hydrogen carrier in the presence of the catalyst precursor NiCO3 [J]. Industrial & Engineering Chemistry Research, 2023, 62(27): 10721-10728. |
34 | GUNASEKAR Gunniya Hariyanandam, PARK Kwangho, JUNG Kwang-Deog, et al. Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts[J]. Inorganic Chemistry Frontiers, 2016, 3(7): 882-895. |
35 | YOUNAS Mohammad, REZAKAZEMI Mashallah, ARBAB Muhammad Saddique, et al. Green hydrogen storage and delivery: Utilizing highly active homogeneous and heterogeneous catalysts for formic acid dehydrogenation[J]. International Journal of Hydrogen Energy, 2022, 47(22): 11694-11724. |
36 | AINEMBABAZI Diana, WANG Kai, FINN Matthew, et al. Efficient transfer hydrogenation of carbonate salts from glycerol using water-soluble iridium N-heterocyclic carbene catalysts[J]. Green Chemistry, 2020, 22(18): 6093-6104. |
37 | WEI Duo, SHI Xinzhe, Sponholz Peter, et al. Manganese promoted (Bi)carbonate hydrogenation and formate dehydrogenation: Toward a circular carbon and hydrogen economy[J]. ACS Central Science, 2022, 8(10): 1457-1463. |
38 | COUFOURIER S, GAILLARD S, CLET G, et al. A MOF-assisted phosphine free bifunctional iron complex for the hydrogenation of carbon dioxide, sodium bicarbonate and carbonate to formate[J]. Chemical Communications, 2019, 55(34): 4977-4980. |
39 | WANG Tian, REN Dezhang, HUO Zhibao, et al. A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water[J]. Green Chemistry, 2017, 19(3): 716-721. |
40 | ZHANG Xiaochen, LI Aowen, TANG Haoyi, et al. Carbonate hydrogenated to formate in the aqueous phase over nickel/TiO2 catalysts[J]. Angewandte Chemie International Edition, 2023, 62(41): e202307061. |
41 | LIANG Xuan, WANG Meng, MA Ding. One-pot conversion of polyester and carbonate into formate without external H2 [J]. Journal of the American Chemical Society, 2024, 146(4): 2711-2717. |
42 | WANG Yixuan, BAN Hongyan, WANG Yugao, et al. Unraveling the role of basic sites in the hydrogenation of CO2 to formic acid over Ni-based catalysts[J]. Journal of Catalysis, 2024, 430: 115357. |
43 | MAHDI Hilman Ibnu, RAMLEE Nurfadhila Nasya, DA SILVA SANTOS Danilo Henrique, et al. Formaldehyde production using methanol and heterogeneous solid catalysts: A comprehensive review[J]. Molecular Catalysis, 2023, 537: 112944. |
44 | KALCK Philippe, LE BERRE Carole, SERP Philippe. Recent advances in the methanol carbonylation reaction into acetic acid[J]. Coordination Chemistry Reviews, 2020, 402: 213078. |
45 | SUN Jian, YANG Guohui, YONEYAMA Yoshiharu, et al. Catalysis chemistry of dimethyl ether synthesis[J]. ACS Catalysis, 2014, 4(10): 3346-3356. |
46 | TIAN Peng, WEI Yingxu, YE Mao, et al. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
47 | LI Teng, SHOINKHOROVA Tuiana, GASCON Jorge, et al. Aromatics production via methanol-mediated transformation routes[J]. ACS Catalysis, 2021, 11(13): 7780-7819. |
48 | 周芳, 曾纪龙, 姜波. 气和煤合成甲醇的原料路线探讨[J]. 化工设计, 2011, 21(5): 3-6. |
ZHOU Fang, ZENG Jilong, JIANG Bo, et al. Probe on feedstock route of methanol production from natural gas and coal[J]. Chemical Engineering Design, 2011, 21(5): 3-6. | |
49 | PONTZEN Florian, LIEBNER Waldemar, GRONEMANN Veronika, et al. CO2-based methanol and DME-Efficient technologies for industrial scale production[J]. Catalysis Today, 2011, 171(1): 242-250. |
50 | G K Surya PRAKASH, OLAH George A, GOEPPERT Alain. Beyond oil and gas: The methanol economy[J]. ECS Transactions, 2011, 35(11): 31-40. |
51 | NEBEL Bernd A, BREUER Michael, SCHNEIDER Andreas, et al. A career in catalysis: Bernhard hauer[J]. ACS Catalysis, 2023, 13(13): 8861-8889. |
52 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
53 | WANG Mengheng, ZHENG Lanling, WANG Genyuan, et al. Spinel nanostructures for the hydrogenation of CO2 to methanol and hydrocarbon chemicals[J]. Journal of the American Chemical Society, 2024, 146(21): 14528-14538. |
54 | RUI Ning, ZHANG Feng, SUN Kaihang, et al. Hydrogenation of CO2 to methanol on a Au δ +-In2O3-x catalyst[J]. ACS Catalysis 2020, 10 (19): 11307-11317. |
55 | SUN Kaihang, ZHANG Zhitao, SHEN Chenyang, et al. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol[J]. Green Energy & Environment, 2022, 7(4): 807-817. |
56 | RUI Ning, WANG Zongyuan, SUN Kaihang, et al. CO2 hydrogenation to methanol over Pd/In2O3: Effects of Pd and oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 218: 488-497. |
57 | SHEN Chenyang, SUN Kaihang, ZOU Rui, et al. CO2 hydrogenation to methanol on indium oxide-supported rhenium catalysts: The effects of size[J]. ACS Catalysis, 2022, 12(20): 12658-12669. |
58 | WIRNER Luca C, KOSAKA Fumihiko, SASAYAMA Tomone, et al. Combined capture and reduction of CO2 to methanol using a dual-bed packed reactor[J]. Chemical Engineering Journal, 2023, 470: 144227. |
59 | Chae JEONG-POTTER, ARELLANO-TREVIÑO Martha A, Wilson MCNEARY W, et al. Modified Cu-Zn-Al mixed oxide dual function materials enable reactive carbon capture to methanol[J]. EES Catalysis, 2024, 2(1): 253-261. |
60 | 何聂燕,李学琴,刘鹏,等. 二氧化碳加氢合成甲醇技术现状及催化剂研究进展[J/OL]. 洁净煤技术. . |
HE Nieyan, LI Xueqin, LIU Peng, et al. Technical status of carbon dioxide hydrogenation to methanol and research progress of catalysts[J]. Clean Coal Technology. . | |
61 | TORRES GALVIS Hirsa M, DE JONG Krijn P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
62 | JAGADEESAN D, SUNDARAYYA Y, MADRAS Giridhar, et al. Direct conversion of calcium carbonate to C1—C3 hydrocarbons[J]. RSC Advances, 2013, 3(20): 7224-7229. |
63 | Ahmed AL-MAMOORI, LAWSON Shane, ROWNAGHI Ali A, et al. Oxidative dehydrogenation of ethane to ethylene in an integrated CO2 capture-utilization process[J]. Applied Catalysis B: Environmental, 2020, 278: 119329. |
64 | LAWSON S, BAAMRAN K, NEWPORT K, et al. Screening of adsorbent/catalyst composite monoliths for carbon capture-utilization and ethylene production[J]. ACS Applied Materials & Interfaces, 2021, 13(46): 55198-55207. |
65 | BAAMRAN Khaled, LAWSON Shane, ROWNAGHI Ali A, et al. Process evaluation and kinetic analysis of 3D-printed monoliths comprised of CaO and Cr/H-ZSM-5 in combined CO2 Capture-C2H6 oxidative dehydrogenation to C2H4 [J]. Chemical Engineering Journal, 2022, 435: 134706. |
66 | ZHANG Xiaoyu, LIU Wenqiang, PENG Peng, et al. A dual functional sorbent/catalyst material for in situ CO2 capture and conversion to ethylene production[J]. Fuel, 2023, 351: 128701. |
67 | XUE Zhen, GUO Jingyi, WU Shasha, et al. Co-thermal in situ reduction of inorganic carbonates to reduce carbon-dioxide emission[J]. Science China Chemistry, 2023, 66(4): 1201-1210. |
68 | 张琦, 沈佳林, 籍杨梅. 典型钢铁制造流程碳排放及碳中和实施路径[J]. 钢铁, 2023, 58(2): 173-187. |
ZHANG Qi, SHEN Jialin, JI Yangmei. Analysis of carbon emissions in typical iron- and steelmaking process and implementation path research of carbon neutrality[J]. Iron & Steel, 2023, 58(2): 173-187. | |
69 | LUO Y H, ZHU D Q, PAN J, et al. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore[J]. Mineral Processing and Extractive Metallurgy, 2016, 125(1): 17-25. |
70 | FENG Yong, WU Deli, LI Hailong, et al. Activation of persulfates using siderite as a source of ferrous ions: Sulfate radical production, stoichiometric efficiency, and implications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3624-3631. |
71 | YU Jianwen, HAN Yuexin, LI Yanjun, et al. Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(5): 349-359. |
72 | CHEN Dong, GUO Hongwei, LV Yanan, et al. Green technology-based utilization of refractory siderite ores to prepare electric arc furnace burden[J]. Steel Research International, 2021, 92(9). |
73 | BALDAUF-SOMMERBAUER G, LUX S, SIEBENHOFER M. Sustainable iron production from mineral iron carbonate and hydrogen[J]. Green Chemistry, 2016, 18(23): 6255-6265. |
74 | ZHANG Dongliang, LI Hanke, YANG Guangxing, et al. Hydrogen-driven routes to steel from siderite with low CO2 emissions: A modeling study[J]. Chemical Engineering Science, 2024, 287: 119702. |
75 | AN Jing, LI Yingnan, MIDDLETON Richard S. Reducing energy consumption and carbon emissions of magnesia refractory products: A life-cycle perspective[J]. Journal of Cleaner Production, 2018, 182: 363-371. |
76 | AN Jing, XUE Xiangxin. Life-cycle carbon footprint analysis of magnesia products[J]. Resources, Conservation and Recycling, 2017, 119: 4-11. |
77 | LI Yongquan. Production and running status of China’s refractories and main downstream industries in 2021[J]. China’s Refractories, 2022, 31(3): 1-4. |
78 | WANG Xiu, ZHAO Liang, ZHANG Lihui, et al. A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry[J]. Energy, 2019, 187: 115963. |
79 | XIE Zhicheng, SUN Zheyi, SHAO Bin, et al. Highly efficient hydrogenation of carbonate to methanol for boating CO2 mitigation[J]. Chemical Engineering Journal, 2024, 495: 153465. |
[1] | WANG Bo, WANG Bin, GONG Xiang, YANG Fusheng, FANG Tao. Enhancing dehydrogenation performance of liquid organic hydrogen carriers based on reactor design: Research progress [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 189-208. |
[2] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[3] | LI Shuaizhe, NIE Yichen, PHIDJAVARD Keomeesay, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research progress on non-precious metal-catalyzed hydrogenation and deoxygenation of biomass to produce hydrocarbon-based biofuels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 225-242. |
[4] | XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304. |
[5] | ZHANG Hao, LIU Shiyu, SHEN Weihua, FANG Yunjin. Dehydration of urea to cyanamide with Ca-ZSM-5 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 365-373. |
[6] | GAO Congzhi, ZHANG Yaxuan, LIN Lu, DENG Xiaoting, YIN Xia, DING Yigang, XIAO Yanhua, DU Zhiping. Synthesis process of neopentyl glycol [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 469-478. |
[7] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
[8] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[9] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[10] | ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392. |
[11] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[12] | WANG Yufei, JIA Yu, ZHANG Yisheng, XUE Wei, LI Fang, WANG Yanji. Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4421-4431. |
[13] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
[14] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
[15] | SONG Xingfei, JIA Xin, AN Ping, HAN Zhennan, XU Guangwen. Development of science and technology in thermochemical reaction engineering [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3513-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |