Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1355-1367.DOI: 10.16085/j.issn.1000-6613.2024-0379
• Industrial catalysis • Previous Articles Next Articles
BI Wentao1,2(
), WANG Xuelin1,2, QU Wei1, WANG Congxin1(
), TIAN Zhijian1
Received:2024-03-07
Revised:2024-04-27
Online:2025-04-16
Published:2025-03-25
Contact:
WANG Congxin
毕文涛1,2(
), 王学林1,2, 曲炜1, 王从新1(
), 田志坚1
通讯作者:
王从新
作者简介:毕文涛(1996—),男,硕士研究生,研究方向为负载型双金属/分子筛催化剂在烷烃异构化反应中的应用。E-mail:biwentao@dicp.ac.cn。
基金资助:CLC Number:
BI Wentao, WANG Xuelin, QU Wei, WANG Congxin, TIAN Zhijian. Effect of Mg-modification on the catalytic performance of Pt/ZSM-22 with low Pt content in n-alkane hydroisomerization[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1355-1367.
毕文涛, 王学林, 曲炜, 王从新, 田志坚. Mg改性对低铂载量Pt/ZSM-22烷烃加氢异构性能的影响[J]. 化工进展, 2025, 44(3): 1355-1367.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0379
| 样品 | 比表面积①/m2·g-1 | 微孔比表面积/m2·g-1 | 外比表面积/m2·g-1 | 微孔体积①/cm3·g-1 | Pt粒径②/nm | Pt分散度②/% | Pt粒径③/nm |
|---|---|---|---|---|---|---|---|
| Z22 | 184.4 | 144.3 | 40.1 | 0.071 | — | — | — |
| Pt/Z22 | 166.7 | 131.5 | 35.2 | 0.065 | 2.4 | 45.6 | 1.9 |
| Pt0.5Mg/Z22 | 108.3 | 70.1 | 38.2 | 0.034 | 1.7 | 67.6 | 1.6 |
| Pt1Mg/Z22 | 55.9 | 22.5 | 33.4 | 0.011 | 1.6 | 68.3 | 1.5 |
| 样品 | 比表面积①/m2·g-1 | 微孔比表面积/m2·g-1 | 外比表面积/m2·g-1 | 微孔体积①/cm3·g-1 | Pt粒径②/nm | Pt分散度②/% | Pt粒径③/nm |
|---|---|---|---|---|---|---|---|
| Z22 | 184.4 | 144.3 | 40.1 | 0.071 | — | — | — |
| Pt/Z22 | 166.7 | 131.5 | 35.2 | 0.065 | 2.4 | 45.6 | 1.9 |
| Pt0.5Mg/Z22 | 108.3 | 70.1 | 38.2 | 0.034 | 1.7 | 67.6 | 1.6 |
| Pt1Mg/Z22 | 55.9 | 22.5 | 33.4 | 0.011 | 1.6 | 68.3 | 1.5 |
| 样品 | 酸度/mmol·g-1 | ||
|---|---|---|---|
| 弱酸量 | 中强酸量 | 总酸量 | |
| Pt/Z22 | 0.27 | 0.22 | 0.49 |
| Pt0.5Mg/Z22 | 0.26 | 0.16 | 0.42 |
| Pt1Mg/Z22 | 0.26 | 0.15 | 0.41 |
| 样品 | 酸度/mmol·g-1 | ||
|---|---|---|---|
| 弱酸量 | 中强酸量 | 总酸量 | |
| Pt/Z22 | 0.27 | 0.22 | 0.49 |
| Pt0.5Mg/Z22 | 0.26 | 0.16 | 0.42 |
| Pt1Mg/Z22 | 0.26 | 0.15 | 0.41 |
| 样品 | 酸类型/μmol·g-1 | 酸类型(150℃,B)/μmol·g-1 | χ | CM/CA | |||||
|---|---|---|---|---|---|---|---|---|---|
| 150℃ | 300℃ | ||||||||
| B | L | B/L | B | L | B/L | ||||
| Pt/Z22 | 112.7 | 22.5 | 5.0 | 95.6 | 15.7 | 6.1 | 8.7 | 0.08 | 0.024 |
| Pt0.5Mg/Z22 | 41.7 | 31.5 | 1.3 | 36.9 | 30.4 | 1.2 | 8.5 | 0.21 | 0.094 |
| Pt1Mg/Z22 | 11.6 | 36.1 | 0.3 | 7.7 | 23.8 | 0.3 | 6.8 | 0.59 | 0.453 |
| 样品 | 酸类型/μmol·g-1 | 酸类型(150℃,B)/μmol·g-1 | χ | CM/CA | |||||
|---|---|---|---|---|---|---|---|---|---|
| 150℃ | 300℃ | ||||||||
| B | L | B/L | B | L | B/L | ||||
| Pt/Z22 | 112.7 | 22.5 | 5.0 | 95.6 | 15.7 | 6.1 | 8.7 | 0.08 | 0.024 |
| Pt0.5Mg/Z22 | 41.7 | 31.5 | 1.3 | 36.9 | 30.4 | 1.2 | 8.5 | 0.21 | 0.094 |
| Pt1Mg/Z22 | 11.6 | 36.1 | 0.3 | 7.7 | 23.8 | 0.3 | 6.8 | 0.59 | 0.453 |
| 1 | AN Kwangjin, ALAYOGLU Selim, MUSSELWHITE Nathan, et al. Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane[J]. Journal of the American Chemical Society, 2014, 136(19): 6830-6833. |
| 2 | PASTVOVA Jana, KAUCKY Dalibor, MORAVKOVA Jaroslava, et al. Effect of enhanced accessibility of acid sites in micromesoporous mordenite zeolites on hydroisomerization of n-hexane[J]. ACS Catalysis, 2017, 7(9): 5781-5795. |
| 3 | 郑仁垟. 金属-分子筛双功能催化剂的结构设计及其烷烃异构研究进展[J]. 化工进展, 2021, 40(7): 3785-3790. |
| ZHENG Renyang. Advances in structure design and alkane isomerization performance of metal-zeolite bifunctional catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3785-3790. | |
| 4 | Yuchao LYU, ZHAN Weilong, WANG Xiaoxing, et al. Regulation of synergy between metal and acid sites over the Ni-SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel, 2020, 274: 117855. |
| 5 | Yuchao LYU, YU Zhumo, YANG Ye, et al. Metal-acid balance in the in-situ solid synthesized Ni/SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel, 2019, 243: 398-405. |
| 6 | KIM Myoung Yeob, LEE Kyungho, CHOI Minkee. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity[J]. Journal of Catalysis, 2014, 319: 232-238. |
| 7 | 陈治平, 王苗苗, 韦晓艺, 等. 复合分子筛在烃类异构化反应中的应用研究进展[J]. 化工进展, 2022, 41(5): 2404-2415. |
| CHEN Zhiping, WANG Miaomiao, WEI Xiaoyi, et al. Application of composite molecular sieve in hydrocarbon isomerization[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2404-2415. | |
| 8 | ALVAREZ F, RIBEIRO F R, PEROT G, et al. Hydroisomerization and hydrocracking of alkanes 7. influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts[J]. Journal of Catalysis, 1996, 162(2): 179-189. |
| 9 | Yoshio ONO. A survey of the mechanism in catalytic isomerization of alkanes[J]. Catalysis Today, 2003, 81(1): 3-16. |
| 10 | GUISNET Michel. “Ideal” bifunctional catalysis over Pt-acid zeolites[J]. Catalysis Today, 2013, 218: 123-134. |
| 11 | WANG Dongxu, LIU Jiancong, CHENG Xusheng, et al. Trace Pt clusters dispersed on SAPO-11 promoting the synergy of metal sites with acid sites for high-effective hydroisomerization of n-alkanes[J]. Small Methods, 2019, 3(5): 1800510. |
| 12 | CLAUDE Marion C, MARTENS Johan A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
| 13 | PARMAR Snehalkumar, PANT Kamal K, JOHN Mathew, et al. Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: Effect of divalent cation exchange[J]. Journal of Molecular Catalysis A: Chemical, 2015, 404: 47-56. |
| 14 | CHEN Yujing, LI Chuang, CHEN Xiao, et al. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13721-13730. |
| 15 | LEE Seung-Woo, Son-Ki IHM. Characteristics of magnesium-promoted Pt/ZSM-23 catalyst for the hydroisomerization of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15359-15365. |
| 16 | PENG Yan, WANG Xuelin, WANG Congxin, et al. Boosting catalytic performance via electron transfer effect for hydroisomerization on a low-Pt-content PtCeOx/zeolite catalyst[J]. Chem Catalysis, 2023, 3(2): 100505. |
| 17 | XIONG Shuxiang, SUN Jiazheng, LI Huiyan, et al. The synthesis of hierarchical ZSM-22 zeolite with only the PHMB template for hydroisomerization of n-hexadecane[J]. Microporous and Mesoporous Materials, 2024, 365: 112895. |
| 18 | ZHANG Lei, GAO Yifei, BAI Xuerui, et al. Ni catalyst on ZSM-22 nanofibers bundles with good catalytic performance in the hydroisomerization of n-dodecane[J]. Fuel, 2024, 357: 129885. |
| 19 | 张海鹏, 王树振, 马梦茜, 等. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能: 模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
| ZHANG Haipeng, WANG Shuzhen, MA Mengxi, et al. Synthesis of ZSM-22 molecular sieve and its n-dodecane hydroisomerization performance: Effect of template agent and dynamic crystallization[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 414-421. | |
| 20 | HAYASAKA Kazuaki, LIANG Duoduo, HUYBRECHTS Ward, et al. Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods[J]. Chemistry, 2007, 13(36): 10070-10077. |
| 21 | Guang LYU, WANG Congxin, WANG Ping, et al. Pt/ZSM-22 with partially filled micropore channels as excellent shape-selective hydroisomerization catalyst[J]. ChemCatChem, 2019, 11(5): 1431-1436. |
| 22 | 余姮, 董焕能, 刘茜桐, 等. MgO修饰的HZSM-5分子筛对甲苯甲醇烷基化反应性能的影响[J]. 厦门大学学报(自然科学版), 2023, 62(1): 78-84. |
| YU Heng, DONG Huanneng, LIU Xitong, et al. Effects of MgO-modified HZSM-5 zeolites on the performance of alkylation reaction of toluene with methanol[J]. Journal of Xiamen University (Natural Science), 2023, 62(1): 78-84. | |
| 23 | KOKOTAILO G T, SCHLENKER J L, DWYER F G, et al. The framework topology of ZSM-22: A high silica zeolite[J]. Zeolites, 1985, 5(6): 349-351. |
| 24 | WANG Congxin, TIAN Zhijian, WANG Lei, et al. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes[J]. ChemSusChem, 2012, 5(10): 1974-1983. |
| 25 | Kinga GÓRA-MAREK, TARACH Karolina, CHOI Minkee. 2, 6-di-tert-butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites[J]. The Journal of Physical Chemistry C, 2014, 118(23): 12266-12274. |
| 26 | SONG Hyunjoon, RIOUX Robert M, HOEFELMEYER James D, et al. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties[J]. Journal of the American Chemical Society, 2006, 128(9): 3027-3037. |
| 27 | ALLIAN Ayman D, TAKANABE Kazuhiro, FUJDALA Kyle L, et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters[J]. Journal of the American Chemical Society, 2011, 133(12): 4498-4517. |
| 28 | 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009: 290. |
| XIN Qin, LUO Mengfei. Modern catalytic research methods[M]. Beijing: Science Press, 2009: 290. | |
| 29 | MUKERJI R J, BOLINA A S, BROWN W A. A RAIRS and TPD investigation of the adsorption of CO on Pt{211}[J]. Surface Science, 2003, 527(1/2/3): 198-208. |
| 30 | BISCHOFF H, JAEGER N I, SCHULZ-EKLOFF G. FTIR study of the particle size dependent chemisorption of CO on Pt dispersed within a faujasite matrix[J]. Zeitschrift Für Physikalische Chemie, 1990, 2710(1): 1093-1102. |
| 31 | MAO Dongsen, YANG Weimin, XIA Jianchao, et al. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component[J]. Journal of Catalysis, 2005, 230(1): 140-149. |
| 32 | CORMA A, FORNÉS V, FORNI L, et al. 2, 6-di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites[J]. Journal of Catalysis, 1998, 179(2): 451-458. |
| 33 | UNGUREANU A, HOANG T V, Trong ON D, et al. An investigation of the acid properties of UL-ZSM-5 by FTIR of adsorbed 2, 6-ditertbutylpyridine and aromatic transalkylation test reaction[J]. Applied Catalysis A: General, 2005, 294(1): 92-105. |
| 34 | Frédéric THIBAULT-STARZYK, STAN Irina, Sònia ABELLÓ, et al. Quantification of enhanced acid site accessibility in hierarchical zeolites—The accessibility index[J]. Journal of Catalysis, 2009, 264(1): 11-14. |
| 35 | DE LUCAS Antonio, RAMOS María Jesús, DORADO Fernando, et al. Influence of the Si/Al ratio in the hydroisomerization of n-octane over platinum and palladium beta zeolite-based catalysts with or without binder[J]. Applied Catalysis A: General, 2005, 289(2): 205-213. |
| 36 | CHOUDHURY Indranil R, HAYASAKA Kazuaki, THYBAUT Joris W, et al. Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by Single-Event MicroKinetic modeling[J]. Journal of Catalysis, 2012, 290: 165-176. |
| 37 | BROSIUS Roald, KOOYMAN Patricia J, FLETCHER Jack C Q. Selective formation of linear alkanes from n-hexadecane primary hydrocracking in shape-selective MFI zeolites by competitive adsorption of water[J]. ACS Catalysis, 2016, 6(11): 7710-7715. |
| 38 | NIU Pengyu, LIU Ping, XI Hongjuan, et al. Design and synthesis of Pt/ZSM-22 catalysts for selective formation of iso-dodecane with branched chain at more central positions from n-dodecane hydroisomerization[J]. Applied Catalysis A: General, 2018, 562: 310-320. |
| 39 | MARTENS J A, JACOBS P A, WEITKAMP J. Attempts to rationalize the distribution of hydrocracked products. I qualitative description of the primary hydrocracking modes of long chain paraffins in open zeolites[J]. Applied Catalysis, 1986, 20(1/2): 239-281. |
| [1] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [2] | ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308. |
| [3] | LIU Junjie, WU Jianmin, SUN Qiwen, WANG Jiancheng, SUN Yan. Research of metallocene catalysts for linear α-olefins polymerization to obtain high molecular weight products [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1309-1322. |
| [4] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| [5] | ZUO Ji, LUO Li, XIE Yongkai, CHEN Wenyao, QIAN Gang, ZHOU Xinggui, DUAN Xuezhi. Effect of Cu catalyst particle size on methanol nonoxidative dehydrogenation to formaldehyde [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1347-1354. |
| [6] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun, MEN Zhuowu. Advances in Fe-based catalysts for conversion of syngas/CO2 to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1323-1337. |
| [7] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| [8] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
| [9] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [10] | LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846. |
| [11] | LI Zhangliang, YANG Yuezhu, WU Chuantian, LYU Yuancai. Degradation of bisphenol A by N-TiO2/MoS2/N-TiO2 immobilized laccase on activated carbon fiber felt [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 887-898. |
| [12] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
| [13] | LI Xiaoqian, REN Shenyong, LIU Lu, YANG Chi, SHEN Baojian, XU Chunming. Modulation of NiMo-based catalysts by Fe species and its effect on catalytic hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 867-878. |
| [14] | ZHANG Huanling, MA Huixia, ZHOU Feng, ZHAO Chenghao, ZHU Xiaolin, WANG Guowei, LI Chunyi. Effect of introduced In species on propane dehydrogenation over Ge/SiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 879-886. |
| [15] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |