Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 887-898.DOI: 10.16085/j.issn.1000-6613.2024-0248
• Industrial catalysis • Previous Articles Next Articles
LI Zhangliang1,3,4(), YANG Yuezhu1,3,4, WU Chuantian1,2, LYU Yuancai2
Received:
2024-02-01
Revised:
2024-05-24
Online:
2025-03-10
Published:
2025-02-25
Contact:
LI Zhangliang
李章良1,3,4(), 杨月珠1,3,4, 伍传田1,2, 吕源财2
通讯作者:
李章良
作者简介:
李章良(1975—),男,硕士,教授,研究方向为污水处理与资源化。E-mail:ptulizhangliang@126.com。
基金资助:
CLC Number:
LI Zhangliang, YANG Yuezhu, WU Chuantian, LYU Yuancai. Degradation of bisphenol A by N-TiO2/MoS2/N-TiO2 immobilized laccase on activated carbon fiber felt[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 887-898.
李章良, 杨月珠, 伍传田, 吕源财. 活性炭纤维毡负载N-TiO2/MoS2/N-TiO2固定化漆酶降解双酚A[J]. 化工进展, 2025, 44(2): 887-898.
样品 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
ACFF | 1084.73 | 0.57 | 2.89 |
NT/MS/NT/ACFF | 443.98 | 0.24 | 3.59 |
样品 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
ACFF | 1084.73 | 0.57 | 2.89 |
NT/MS/NT/ACFF | 443.98 | 0.24 | 3.59 |
不同体系 | 拟一级动力学拟合方程 | kobs/min-1 | R2 |
---|---|---|---|
固定化灭活漆酶 | y = 0.000162x | 0.000162 | 0.8731 |
可见光下固定化灭活漆酶 | y = 0.00176x | 0.00176 | 0.9526 |
固定化漆酶 | y = 0.0022x | 0.0022 | 0.9493 |
可见光下固定化漆酶 | y = 0.00764x | 0.00764 | 0.9858 |
不同体系 | 拟一级动力学拟合方程 | kobs/min-1 | R2 |
---|---|---|---|
固定化灭活漆酶 | y = 0.000162x | 0.000162 | 0.8731 |
可见光下固定化灭活漆酶 | y = 0.00176x | 0.00176 | 0.9526 |
固定化漆酶 | y = 0.0022x | 0.0022 | 0.9493 |
可见光下固定化漆酶 | y = 0.00764x | 0.00764 | 0.9858 |
序号 | 停留时间/min | 化合物 | 化学式 | 质核比(m/z) |
---|---|---|---|---|
1 | 29.083 | 双酚A | C15H16O2 | 228 |
2 | 10.708 | 2,4-二叔丁基苯酚 | C14H22O | 206 |
3 | 9.133 | 3-异丙基苯甲酸 | C10H12O2 | 164 |
4 | 7.258 | 对苯甲酸 | C8H8O2 | 136 |
5 | 10.308 | 2,5-二甲基对苯醌 | C8H8O2 | 136 |
6 | 7.808 | 丁烯二酸 | C5H6O4 | 130 |
序号 | 停留时间/min | 化合物 | 化学式 | 质核比(m/z) |
---|---|---|---|---|
1 | 29.083 | 双酚A | C15H16O2 | 228 |
2 | 10.708 | 2,4-二叔丁基苯酚 | C14H22O | 206 |
3 | 9.133 | 3-异丙基苯甲酸 | C10H12O2 | 164 |
4 | 7.258 | 对苯甲酸 | C8H8O2 | 136 |
5 | 10.308 | 2,5-二甲基对苯醌 | C8H8O2 | 136 |
6 | 7.808 | 丁烯二酸 | C5H6O4 | 130 |
1 | CORRALES Jone, KRISTOFCO Lauren A, Baylor STEELE W, et al. Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation[J]. Dose-response, 2015, 13(3): 1559325815598308. |
2 | 李熠明, 焦昭杰, 张贤明, 等. 典型内分泌干扰物双酚A废水处理研究进展[J]. 环境化学, 2023, 42(11): 4019-4031. |
LI Yiming, JIAO Zhaojie, ZHANG Xianming, et al. Progress in the treatment technologies toward endocrine disrupter bisphenol A[J]. Environmental Chemistry, 2023, 42(11): 4019-4031. | |
3 | BHATNAGAR Amit, ANASTOPOULOS Ioannis. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review[J]. Chemosphere, 2017, 168: 885-902. |
4 | GASSARA Fatma, BRAR Satinder K, VERMA M, et al. Bisphenol A degradation in water by ligninolytic enzymes[J]. Chemosphere, 2013, 92(10): 1356-1360. |
5 | WU Enhui, LI Yuexian, HUANG Qing, et al. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal[J]. Chemosphere, 2019, 233: 327-335. |
6 | BAYRAMOGLU Gulay, KARAGOZ Bunyamin, Yakup ARICA M. Cyclic-carbonate functionalized polymer brushes on polymeric microspheres: Immobilized laccase for degradation of endocrine disturbing compounds[J]. Journal of Industrial and Engineering Chemistry, 2018, 60: 407-417. |
7 | ANSARI Shakeel Ahmed, HUSAIN Qayyum. Potential applications of enzymes immobilized on/in nano materials: A review[J]. Biotechnology Advances, 2012, 30(3): 512-523. |
8 | BONINGARI Thirupathi, INTURI Siva Nagi Reddy, SUIDAN Makram, et al. Novel continuous single-step synthesis of nitrogen-modified TiO2 by flame spray pyrolysis for photocatalytic degradation of phenol in visible light[J]. Journal of Materials Science & Technology, 2018, 34(9): 1494-1502. |
9 | HU Xiaolin, LU Shucao, TIAN Jian, et al. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2019, 241: 329-337. |
10 | ZHAO Haitao, MU Xueliang, ZHENG Chenghang, et al. Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury[J]. Journal of Hazardous Materials, 2019, 366: 240-249. |
11 | LI Min, LU Bin, KE Qinfei, et al. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal[J]. Journal of Hazardous Materials, 2017, 333: 88-98. |
12 | 范星, 唐玉朝, 张倩倩, 等. 活性炭纤维负载柠檬酸铁活化过硫酸氢钾降解罗丹明B的研究[J]. 环境科学研究, 2019, 32(11): 1928-1935. |
FAN Xing, TANG Yuchao, ZHANG Qianqian, et al. Degradation of rhodamine B by PMS activated with ferric citrate loaded carbon fiber[J]. Research of Environmental Sciences, 2019, 32(11): 1928-1935. | |
13 | 张鹏辉, 秦鸿杰, 郑其玲, 等. CoPc-PCN异质结高效界面电荷转移活化PMS降解四环素[J]. 精细化工, 2024, 41(3): 657-665, 696. |
ZHANG Penghui, QIN Hongjie, ZHENG Qiling, et al. CoPc-PCN heterojunction activating PMS by efficient interfacial charge transfer for tetracycline degradation[J]. Fine Chemicals, 2024, 41(3): 657-665, 696. | |
14 | 张明明, 李静, 龚焱, 等. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19. |
ZHANG Mingming, LI Jing, GONG Yan, et al. Photocatalytic degradation of BPA by a MnFe2O4 manosphere modified graphite carbon nitride composite photocatalyst with peroxymonosulfate activation ability[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 9-19. | |
15 | SHI Jianwen, CUI Haojie, CHEN Jianwei, et al. TiO2/activated carbon fibers photocatalyst: Effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability[J]. Journal of Colloid and Interface Science, 2012, 388(1): 201-208. |
16 | ZHENG Mingtao, LIU Yingliang, JIANG Kemin, et al. Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J]. Carbon, 2010, 48(4): 1224-1233. |
17 | CHEN Xiaobo, MAO Samuel S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959. |
18 | PEI Fuyun, LIU Yingliang, XU Shengang, et al. Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution[J]. International Journal of Hydrogen Energy, 2013, 38(6): 2670-2677. |
19 | HE Haiyong, LIN Junhao, FU Wei, et al. MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(14): 1600464. |
20 | LIN Yi, REN Pinyun, WEI Chengyang. Fabrication of MoS2/TiO2 heterostructures with enhanced photocatalytic activity[J]. CrystEngComm, 2019, 21(22): 3439-3450. |
21 | JAGADALE Tushar C, TAKALE Shrikant P, SONAWANE Ravindra S, et al. N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide Sol-gel method[J]. The Journal of Physical Chemistry C, 2008, 112(37): 14595-14602. |
22 | WANG Fangzhi, LI Wenjun, GU Shaonan, et al. Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335: 140-148. |
23 | CHOI Hyun Chul, JUNG Young Mee, KIM Seung Bin. Size effects in the Raman spectra of TiO2 nanoparticles[J]. Vibrational Spectroscopy, 2005, 37(1): 33-38. |
24 | LI Haidong, WANG Yana, CHEN Guohui, et al. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property[J]. Nanoscale, 2016, 8(11): 6101-6109. |
25 | CHANDRABOSE Gauthaman, Avishek DEY, GAUR Shivani Singh, et al. Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite[J]. Chemosphere, 2021, 279: 130467. |
26 | SHEN Meng, YAN Zhiping, YANG Lei, et al. MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities[J]. Chemical Communications, 2014, 50(97): 15447-15449. |
27 | XIANG Quanjun, YU Jiaguo, JARONIEC Mietek. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(15): 6575-6578. |
28 | TIAN Mingjun, LIAO Fang, KE Qinfei, et al. Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene[J]. Chemical Engineering Journal, 2017, 328: 962-976. |
29 | LIU Hui, Ting LYU, ZHU Chunkui, et al. Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity[J]. Journal of Molecular Catalysis A: Chemical, 2015, 396: 136-142. |
30 | GUPTA Shipra Mital, TRIPATHI Manoj. A review of TiO2 nanoparticles[J]. Chinese Science Bulletin, 2011, 56(16): 1639-1657. |
31 | HAMDI Abderrhamane, BOUSSEKEY Luc, ROUSSEL Pascal, et al. Hydrothermal preparation of MoS2/TiO2/Si nanowires composite with enhanced photocatalytic performance under visible light[J]. Materials & Design, 2016, 109: 634-643. |
32 | SHAO Binbin, LIU Zhifeng, ZENG Guangming, et al. Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal[J]. Journal of Hazardous Materials, 2019, 362: 318-326. |
33 | JIA Yating, CHEN Yuancai, LUO Jun, et al. Immobilization of laccase onto meso-MIL-53(Al) via physical adsorption for the catalytic conversion of triclosan[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109670. |
34 | BURDA Clemens, LOU Yongbing, CHEN Xiaobo, et al. Enhanced nitrogen doping in TiO2 nanoparticles[J]. Nano Letters, 2003, 3(8): 1049-1051. |
35 | WANG Minggui, HU Yimin, HAN Jie, et al. TiO2/NiO hybrid shells: P-n junction photocatalysts with enhanced activity under visible light[J]. Journal of Materials Chemistry A, 2015, 3(41): 20727-20735. |
36 | LAN Shenyu, CHEN Yanxi, ZENG Lixi, et al. Piezo-activation of peroxymonosulfate for benzothiazole removal in water[J]. Journal of Hazardous Materials, 2020, 393: 122448. |
37 | SITARZ Anna K, MIKKELSEN Jørn D, MEYER Anne S. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications[J]. Critical Reviews in Biotechnology, 2016, 36(1): 70-86. |
38 | 丁惠君, 吴亦潇, 钟家有, 等. 两种介体物质在漆酶降解磺胺类抗生素中的作用[J]. 中国环境科学, 2016, 36(5): 1469-1475. |
DING Huijun, WU Yixiao, ZHONG Jiayou, et al. Role of two mediators in sulfonamide antibiotics degradation by laccase oxidation system[J]. China Environmental Science, 2016, 36(5): 1469-1475. | |
39 | LIU Hongyan, ZHANG Zexiong, XIE Shiwei, et al. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking[J]. Chemosphere, 2019, 224: 743-750. |
40 | TAGHIZADEH Tohid, Amin TALEBIAN-KIAKALAIEH, JAHANDAR Hoda, et al. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y[J]. Journal of Hazardous Materials, 2020, 386: 121950. |
41 | Dalel DAÂSSI, PRIETO Alicia, Héla ZOUARI-MECHICHI, et al. Degradation of bisphenol A by different fungal laccases and identification of its degradation products[J]. International Biodeterioration & Biodegradation, 2016, 110: 181-188. |
[1] | ZHUANG Ke, CHEN Hong, XU Yun, ZHONG Zhaoping, ZHOU Junwu, ZHOU Kai, DONG Yuehong. Resistance of SiO2 modified Ce-V-W/Ti catalyst support to alkali (earth) metal poisoning [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 266-276. |
[2] | XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304. |
[3] | SONG Caicheng, CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of carbon-based carrier supported hydrodesulfurization catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 305-314. |
[4] | ZHANG Ridong, LYU Jianhua, LIU Jidong, GUO Bao, LI Wensong. Ru-K-NaY catalyzed decarbonylation of dimethyl oxalate to dimethyl carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 382-390. |
[5] | LI Lin, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Chunxia, WANG Junlian, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Recovery and regeneration preparation of aluminum-based spent catalyst support [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 640-649. |
[6] | ZHAO Xingcheng, JIA Fangxu, LIU Chenyu, HAN Baohong, MEI Ning, YAO Hong. Biofilm attachment performances and microbial communities of the carriers in full-scale PN/A process [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5242-5249. |
[7] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[8] | JI Xiaoyan, XU Rui, WANG Fei, LI Xun. Direct immobilization of Thermomyces lanuginosus lipase mediated by VKT-peptide for efficient biodiesel production from Jatropha curcas oil [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3285-3292. |
[9] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
[10] | WANG Bicong, PAN Dawei, XIE Rui, JU Xiaojie, LIU Zhuang, WANG Wei, CHU Liangyin. Fabrication of multi-enzyme@ZIF-8 for extraction of anthocyanins from black rice [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1403-1411. |
[11] | WU Jianan, ZHANG Hua, LI Zhe, XU Shan, YIN Yong, ZHANG Wenyi. Synergistic biodegradation of 2,4-DCP in soil by bovine bone char-based bacterial agent (HD) with earthworms and its impact on microbial communities [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6896-6904. |
[12] | MA Xianggang, DING Yuan, ZHANG Junge, LIU Yingliang, XU Shengang, CAO Shaokui. Progress of photocatalytic degradation of bisphenol A by modified g-C3N4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6271-6292. |
[13] | NIU Qianjin, LI Chunguang, LIU Zhenzhong, LIU Longcheng. Effect of Ca(OH)2 grouting on the property of alkali-activated solidified uranium tailing slags [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6458-6467. |
[14] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[15] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 20
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |