1 |
侯旺君, 闫翎鹏, 曹哲勇, 等. 煤基零维纳米碳材料的合成、性能及其在能源转换和存储应用中的研究进展[J]. 化工学报, 2022, 73(11): 4791-4813.
|
|
HOU Wangjun, YAN Lingpeng, CAO Zheyong, et al. Research progress of synthesis and properties of coal-based zero-dimensional nanocarbon materials and their applications in energy conversion and storage[J]. CIESC Journal, 2022, 73(11): 4791-4813.
|
2 |
蔡婷婷, 胡胜亮. 煤基碳点及其复合物的调制与催化应用[J]. 洁净煤技术, 2023, 29(2): 67-79.
|
|
CAI Tingting, HU Shengliang. Modulation and catalytic application of coal-based carbon dots and its composite[J]. Clean Coal Technology, 2023, 29(2): 67-79.
|
3 |
Ashlin M RAJ, BALACHANDRAN Manoj. Coal-based fluorescent zero-dimensional carbon nanomaterials: A short review[J]. Energy & Fuels, 2020, 34(11): 13291-13306.
|
4 |
HAN Mei, ZHU Shoujun, LU Siyu, et al. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications[J]. Nano Today, 2018, 19: 201-218.
|
5 |
YE Ruquan, XIANG Changsheng, LIN Jian, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications, 2013, 4: 2943.
|
6 |
HU Shengliang, WEI Zhijia, CHANG Qing, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Applied Surface Science, 2016, 378: 402-407.
|
7 |
HU Chao, YU Chang, LI Mingyu, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(Ⅱ) detection[J]. Small, 2014, 10(23): 4926-4933.
|
8 |
ZHANG Yating, LI Keke, REN Shaozhao, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(Ⅱ) detection[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9793-9799.
|
9 |
SUN Xun, CHEN Songying, LIU Jingting, et al. Hydrodynamic cavitation: A promising technology for industrial-scale synthesis of nanomaterials[J]. Frontiers in Chemistry, 2020, 8: 259.
|
10 |
TYURNINA Anastasia V, TZANAKIS Iakovos, MORTON Justin, et al. Ultrasonic exfoliation of graphene in water: A key parameter study[J]. Carbon, 2020, 168: 737-747.
|
11 |
GOGATE Parag R, KABADI Abhijeet M. A review of applications of cavitation in biochemical engineering/biotechnology[J]. Biochemical Engineering Journal, 2009, 44(1): 60-72.
|
12 |
TYURNINA Anastasia V, MORTON Justin A, SUBROTO Tungky, et al. Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene[J]. Carbon, 2021, 185: 536-545.
|
13 |
TYURNINA Anastasia V, MORTON Justin A, KAUR Amanpreet, et al. Effects of green solvents and surfactants on the characteristics of few-layer graphene produced by dual-frequency ultrasonic liquid phase exfoliation technique[J]. Carbon, 2023, 206: 7-15.
|
14 |
CHOI Chang Ho, PARK Young June, WU Xiaoge, et al. Highly efficient and continuous production of few-layer black phosphorus nanosheets and quantum dots via acoustic-microfluidic process[J]. Chemical Engineering Journal, 2018, 333: 336-342.
|
15 |
ALBANESE Lorenzo, BARONTI Silvia, LIGUORI Francesca, et al. Hydrodynamic cavitation as an energy efficient process to increase biochar surface area and porosity: A case study[J]. Journal of Cleaner Production, 2019, 210: 159-169.
|
16 |
YEH Yen Yu, CHIANG Wei Hung, LIU Weiren. Synthesis of few-layer WS2 by jet cavitation as anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 775: 1251-1258.
|
17 |
DE ALWIS Steven, SHIRSAVAR Mehran Abbasi, SINGH Sarabjit, et al. Hydrodynamic cavitation for scalable exfoliation of few-layered graphene nanosheets[J]. Nanotechnology, 2021, 32(50): 505701.
|
18 |
GOTO Taku, HATAKEYAMA Kazuto, ITO Tsuyohito, et al. Chemical-free exfoliation of hexagonal boron nitride via cavitation-bubble plasma in water[J]. Journal of Physics D: Applied Physics, 2022, 55(33): 335204.
|
19 |
CHEN Li, WU Chuanli, DU Pan, et al. Electrolyzing synthesis of boron-doped graphene quantum dots for fluorescence determination of Fe3+ ions in water samples[J]. Talanta, 2017, 164: 100-109.
|
20 |
梁昌鸿, 梁伟强,李伍. 基于傅里叶红外光谱不同煤阶煤的官能团研究[J]. 煤炭科学技术, 2020, 48:182-186.
|
|
LIANG Changhong, LIANG Weiqiang, LI Wu. Functional groups of different coal ranks based on infrared spectroscopy[J]. Coal Science and Technology, 2020, 48:182-186.
|
21 |
刘琬玥, 刘钦甫, 刘霖松, 等. 沁水盆地北部中高煤阶煤结构的FTIR特征研究[J]. 煤炭科学技术, 2019, 47(2): 181-187.
|
|
LIU Wanyue, LIU Qinfu, LIU Linsong, et al. Study on FTIR features of middle and high rank coal structure in north part of Qinshui Basin[J]. Coal Science and Technology, 2019, 47(2): 181-187.
|
22 |
QIN Fuwei, LI Qiqi, TANG Tingting, et al. Functional carbon dots from a mild oxidation of coal liquefaction residue[J]. Fuel, 2022, 322: 124216.
|
23 |
吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
|
|
WU Xingchen, LIANG Wenhui, CAI Chenxin. Photoluminescence mechanisms of carbon quantum dots[J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
|
24 |
AI Lin, YANG Yisen, WANG Boyang, et al. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives[J]. Science Bulletin, 2021, 66(8): 839-856.
|
25 |
Mahasin Alam SK, ANANTHANARAYANAN Arundithi, HUANG Lin, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. J. Mater. Chem. C, 2014, 2(34): 6954-6960.
|
26 |
ZHENG Huzhi, WANG Qinlong, LONG Yijuan, et al. Enhancing the luminescence of carbon dots with a reduction pathway[J]. Chemical Communications, 2011, 47(38): 10650-10652.
|
27 |
ZHI Bo, YAO Xiaoxiao, CUI Yi, et al. Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots[J]. Nanoscale, 2019, 11(43): 20411-20428.
|
28 |
WANG Boyang, LU Siyu. The light of carbon dots: From mechanism to applications[J]. Matter, 2022, 5(1): 110-149.
|