Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3440-3449.DOI: 10.16085/j.issn.1000-6613.2023-0822
• Resources and environmental engineering • Previous Articles
MA Jiahui(), WANG Yibin, FENG Jingwu, TAN Houzhang(), LIN Chi
Received:
2023-05-17
Revised:
2023-06-30
Online:
2024-07-02
Published:
2024-06-15
Contact:
TAN Houzhang
通讯作者:
谭厚章
作者简介:
马佳慧(2000—),女,硕士研究生,研究方向为固废利用。E-mail:jiahuima@stu.xjtu.edu.cn。
基金资助:
CLC Number:
MA Jiahui, WANG Yibin, FENG Jingwu, TAN Houzhang, LIN Chi. Experimental of CO2 mineralization by industrial containing calcium solid wastes[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3440-3449.
马佳慧, 王毅斌, 冯敬武, 谭厚章, 林翅. 工业含钙固废矿化CO2的实验[J]. 化工进展, 2024, 43(6): 3440-3449.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0822
样品 | 质量分数/% | 理论矿化能力/kg CO2·(t固废)-1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | Al2O3 | SO3 | K2O | Fe2O3 | MgO | Na2O | 其他 | 总和 | ||
燃煤飞灰1 | 38.18 | 33.50 | 15.90 | 5.88 | 1.32 | 1.03 | 2.04 | 0.00 | 2.15 | 100 | 253.31 |
燃煤飞灰2 | 40.69 | 32.52 | 15.20 | 6.06 | 1.89 | 1.23 | 1.17 | 0.00 | 1.24 | 100 | 235.05 |
烧结法赤泥 | 26.20 | 24.80 | 19.10 | 0.68 | 0.42 | 3.37 | 6.68 | 17.00 | 1.75 | 100 | 264.62 |
拜耳法赤泥 | 13.10 | 1.13 | 26.00 | 0.44 | 0.17 | 10.50 | 0.00 | 47.10 | 1.56 | 100 | 6.47 |
净化灰[ | 5.40 | 58.83 | 0.97 | 0.79 | 1.03 | 0.48 | 2.71 | 0.14 | 29.65 | 100 | 487.70 |
烘干灰[ | 4.09 | 14.86 | 1.65 | 3.19 | 0.15 | 1.48 | 4.87 | 0.78 | 71.09 | 100 | 129.02 |
样品 | 质量分数/% | 理论矿化能力/kg CO2·(t固废)-1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | Al2O3 | SO3 | K2O | Fe2O3 | MgO | Na2O | 其他 | 总和 | ||
燃煤飞灰1 | 38.18 | 33.50 | 15.90 | 5.88 | 1.32 | 1.03 | 2.04 | 0.00 | 2.15 | 100 | 253.31 |
燃煤飞灰2 | 40.69 | 32.52 | 15.20 | 6.06 | 1.89 | 1.23 | 1.17 | 0.00 | 1.24 | 100 | 235.05 |
烧结法赤泥 | 26.20 | 24.80 | 19.10 | 0.68 | 0.42 | 3.37 | 6.68 | 17.00 | 1.75 | 100 | 264.62 |
拜耳法赤泥 | 13.10 | 1.13 | 26.00 | 0.44 | 0.17 | 10.50 | 0.00 | 47.10 | 1.56 | 100 | 6.47 |
净化灰[ | 5.40 | 58.83 | 0.97 | 0.79 | 1.03 | 0.48 | 2.71 | 0.14 | 29.65 | 100 | 487.70 |
烘干灰[ | 4.09 | 14.86 | 1.65 | 3.19 | 0.15 | 1.48 | 4.87 | 0.78 | 71.09 | 100 | 129.02 |
方式 | 样品 | 失重 百分比/% | 矿化 效率/% | 实际矿化能力 /kgCO2·(t固废)-1 |
---|---|---|---|---|
间接矿化 | 净化灰 | 43.51 | 57.60 | 281.07 |
燃煤飞灰2 | 42.57 | 15.85 | 37.40 | |
烧结法赤泥 | 41.97 | 23.45 | 61.92 | |
直接矿化 | 净化灰 | 7.42 | 5.34 | 26.06 |
燃煤飞灰2 | 8.78 | 27.34 | 64.52 | |
烧结法赤泥 | 18.68 | 67.25 | 177.53 |
方式 | 样品 | 失重 百分比/% | 矿化 效率/% | 实际矿化能力 /kgCO2·(t固废)-1 |
---|---|---|---|---|
间接矿化 | 净化灰 | 43.51 | 57.60 | 281.07 |
燃煤飞灰2 | 42.57 | 15.85 | 37.40 | |
烧结法赤泥 | 41.97 | 23.45 | 61.92 | |
直接矿化 | 净化灰 | 7.42 | 5.34 | 26.06 |
燃煤飞灰2 | 8.78 | 27.34 | 64.52 | |
烧结法赤泥 | 18.68 | 67.25 | 177.53 |
1 | 傅桦. 全球气候变暖的成因与影响[J]. 首都师范大学学报(自然科学版), 2007, 28(6): 11-15, 21. |
FU Hua. Cause and effect of global climate warming[J]. Journal of Capital Normal University (Natural Science Edition), 2007, 28(6): 11-15, 21. | |
2 | 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11): 1-25. |
Project Synthesis Report Writing Team.Comprehensive report on China's long-term low-carbon development strategy and transformation path[J]. China Population, Resources and Environment, 2020, 30(11): 1-25. | |
3 | 康秦豪, 毛笑. 粉煤灰特性及其资源化利用中存在的问题探讨[J]. 粉煤灰综合利用, 2020, 34(4): 107-111. |
KANG Qinhao, MAO Xiao. Discussion on the characteristics of fly ash and the problems existing in its resource utilization[J]. Fly Ash Comprehensive Utilization, 2020, 34(4): 107-111. | |
4 | 郑寒冰, 林静雯, 姚胜东, 等. 电石渣处理冶金废水产物二水硫酸钙的研究[J]. 辽宁化工, 2021, 50(12): 1758-1762. |
ZHENG Hanbing, LIN Jingwen, YAO Shengdong, et al. Study on calcium sulfate dihydrate produced by the reaction of calcium carbide slag with metallurgical wastewater[J]. Liaoning Chemical Industry, 2021, 50(12): 1758-1762. | |
5 | 于目深, 王旭江, 孙德强, 等. 赤泥资源化利用现状研究[J]. 中国矿业, 2022, 31(6): 1-9. |
YU Mushen, WANG Xujiang, SUN Deqiang, et al. Study on the current situation of red mud resource utilization[J]. China Mining Magazine, 2022, 31(6): 1-9. | |
6 | ABDEL HAKIM Abou Elfotouh. Improving the vicat softening point of poly(vinyl chloride) mixtures through blending with different polymers and inorganic fillers[J]. Egyptian Journal of Chemistry, 2021. |
7 | 苏艳群, 杨扬, 刘金刚. 苛化碳酸钙制备及其加填对纸张施胶性能的影响[J]. 中国造纸学报, 2013, 28(1): 5-9. |
SU Yanqun, YANG Yang, LIU Jingang. Preparation of causticizing calcium carbonate and the effects of its application as filler on the paper sizing property[J]. Transactions of China Pulp and Paper, 2013, 28(1): 5-9. | |
8 | DE MARIA Vitor Peixoto Klienchen, DE PAIVA Fábio Friol Guedes, Flávio Camargo Cabrera, et al. Mechanical and rheological properties of partial replacement of carbon black by treated ultrafine calcium carbonate in natural rubber compounds[J]. Polymer Bulletin, 2022, 79(9): 7969-7987. |
9 | ERSOY Orkun, Dilek GÜLER, Murat RENÇBEROĞLU. Effects of grinding aids used in grinding calcium carbonate (CaCO3) filler on the properties of water-based interior paints[J]. Coatings, 2021, 12(1): 44. |
10 | DOTTA Tatiane Cristina, HAYANN Larwsk, DE PADUA ANDRADE ALMEIDA Leonardo, et al. Strontium carbonate and strontium-substituted calcium carbonate nanoparticles form protective deposits on dentin surface and enhance human dental pulp stem cells mineralization[J]. Journal of Functional Biomaterials, 2022, 13(4): 250. |
11 | LA PLANTE Erika Callagon, MEHDIPOUR Iman, SHORTT Ian, et al. Controls on CO2 mineralization using natural and industrial alkaline solids under ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32): 10727-10739. |
12 | 武鸽, 刘艳芳, 崔龙鹏, 等. 典型工业固体废物碳酸化反应性能的比较[J]. 石油学报(石油加工), 2020, 36(1): 169-178. |
WU Ge, LIU Yanfang, CUI Longpeng, et al. Comparison of the carbonation reaction properties of typical industrial solid wastes[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 169-178. | |
13 | 王中辉, 苏胜, 尹子骏, 等. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展, 2021, 40(4): 2318-2327. |
WANG Zhonghui, SU Sheng, YIN Zijun, et al. Research progress of CO2 mineralization and integrated absorption-mineralization(IAM) method[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2318-2327. | |
14 | LI Wenxiu, HUANG Yan, WANG Tao, et al. Preparation of calcium carbonate nanoparticles from waste carbide slag based on CO2 mineralization[J]. Journal of Cleaner Production, 2022, 363: 132463. |
15 | RAGIPANI Raghavendra, SREENIVASAN Keerthana, ANEX Robert P, et al. Direct air capture and sequestration of CO2 by accelerated indirect aqueous mineral carbonation under ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7852-7861. |
16 | 纪龙. 利用粉煤灰矿化封存二氧化碳的研究[D]. 北京: 中国矿业大学(北京), 2018. |
JI Long. Study on sequestration of carbon dioxide by mineralization of fly ash[D].Beijing: China University of Mining & Technology, Beijing, 2018. | |
17 | 叶龙泼, 李爽, 岳海荣, 等. 富钙溶液中萃取与反应耦合强化CO2矿化过程[J]. 化工学报, 2015, 66(9): 3511-3517. |
YE Longpo, LI Shuang, YUE Hairong, et al. Process intensification by coupling reaction and extraction for CO2 mineralization in Ca2+-rich solution[J]. CIESC Journal, 2015, 66(9): 3511-3517. | |
18 | WANG Xiaolong, Mercedes MAROTO-VALER M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation[J]. Fuel, 2011, 90(3): 1229-1237. |
19 | DING Wenjin, CHEN Qiuju, SUN Hongjuan, et al. Modified mineral carbonation of phosphogypsum for CO2 sequestration[J]. Journal of CO2 Utilization, 2019, 34: 507-515. |
20 | Hsing-Jung HO, IIZUKA Atsushi, SHIBATA Etsuro, et al. Circular indirect carbonation of coal fly ash for carbon dioxide capture and utilization[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108269. |
21 | HOSSEINI Tahereh, SELOMULYA Cordelia, HAQUE Nawshad, et al. Indirect carbonation of Victorian brown coal fly ash for CO2 sequestration: Multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling[J]. Energy & Fuels, 2014, 28(10): 6481-6493. |
22 | SAID Arshe, LAUKKANEN Timo, Mika JÄRVINEN. Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag[J]. Applied Energy, 2016, 177: 602-611. |
23 | 王子心. 电石渣资源化回收利用工艺研究[D]. 北京: 北京化工大学, 2021. |
WANG Zixin. Study on recycling technology of carbide slag[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
24 | WANG Yibin, LI Liangyu, AN Qiwei, et al. Investigation on ash fusion temperature and slagging characteristic of Zhundong coal blends, Part 1: The effect of two solid wastes from calcium carbide production[J]. Fuel Processing Technology, 2022, 228: 107138. |
25 | OWAIS Muhammad, YAZDANI Maryam R, Mika JÄRVINEN. Detailed performance analysis of the wet extractive grinding process for higher calcium yields from steelmaking slags[J]. Chemical Engineering and Processing: Process Intensification, 2021, 166: 108489. |
26 | XIAO Yujia, TIONG Michelle, MO Kim Hung, et al. Recycling Bayer and sintering red muds in brick production: A review[J]. Journal of Zhejiang University: SCIENCE A, 2022, 23(5): 335-357. |
27 | 唐辉. 利用炼钢厂废渣碳酸化固定CO2的研究[D]. 武汉: 武汉科技大学, 2012. |
TANG Hui. Study on CO2 immobilization by carbonation of steel plant waste residue[D]. Wuhan: Wuhan University of Science and Technology, 2012. | |
28 | 于亚杰. 方解石制备碳酸钙晶须的影响因素及机理研究[D]. 沈阳: 沈阳化工大学, 2021. |
YU Yajie. Study on influencing factors and mechanism of calcium carbonate whiskers prepared from calcite[D]. Shenyang: Shenyang University of Chemical Technology, 2021. | |
29 | 王鑫, 韦明, 刘琨. 球霰石型碳酸钙的调控制备研究进展[J]. 硅酸盐通报, 2022, 41(8): 2860-2870, 2878. |
WANG Xin, WEI Ming, LIU Kun. Research progress on control and preparation of vaterite-type calcium carbonate[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2860-2870, 2878. | |
30 | 王亚光. 赤泥-粉煤灰-脱硫石膏新型胶凝材料微结构演变与复合协同效应[D]. 北京: 北京科技大学, 2022. |
WANG Yaguang. Microstructure evolution and composite synergistic effect of a new cementitious material of red mud-fly ash-desulfurization gypsum[D]. Beijing: University of Science and Technology Beijing, 2022. | |
31 | 伊元荣, 韩敏芳, 于立安. 利用赤泥捕获CO2反应特性[J]. 化工学报, 2011, 62(9): 2635-2642. |
YI Yuanrong, HAN Minfang, YU Lian. Reaction characteristics of CO2 captured by red mud[J]. CIESC Journal, 2011, 62(9): 2635-2642. | |
32 | 曹瑞雪, 康泽双, 刘万超, 等. 赤泥吸收矿化CO2技术研究[J]. 有色金属(冶炼部分), 2022(4): 57-60. |
CAO Ruixue, KANG Zeshuang, LIU Wanchao, et al. Absorption and mineralization of CO2 with red mud[J]. Nonferrous Metals (Extractive Metallurgy), 2022(4): 57-60. | |
33 | 包炜军, 李会泉, 张懿. 温室气体CO2矿物碳酸化固定研究进展[J]. 化工学报, 2007, 58(1): 1-9. |
BAO Weijun, LI Huiquan, ZHANG Yi. Progress in carbon dioxide sequestration by mineral carbonation[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(1): 1-9. |
[1] | ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939. |
[2] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[3] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[4] | ZENG Zhuang, LI Kezhi, YUAN Zhiwei, DU Jintao, LI Zhuoshi, WANG Yue. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. |
[5] | YAN Zhe, LIU Chang, WANG Fengxu, ZHOU Hongwang, LIU Xi, ZHAO Xuebing. Electrochemical reduction of CO2 coupled with oxidative conversion of biomass [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3310-3321. |
[6] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
[7] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[8] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[9] | HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775. |
[10] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[11] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
[12] | LI Xinze, ZOU Weijie, SUN Chen, FU Xuan, CHEN Qian, YUAN Liang, WANG Zicheng, XING Xiaokai, XIONG Xiaoqin, GUO Lianghui. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang oilfield [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833. |
[13] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[14] | WANG Dongliang, LI Jingwei, MENG Wenliang, YANG Yong, ZHOU Huairong, FAN Zongliang. Influencing factors of CO2 and H2 utilization rate in CO2 hydrogenation to methanol and process optimization design [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2843-2850. |
[15] | PANG Shuxin, WANG Hao, WANG Jianyu, ZHU Kake, LIU Zhicheng. Thermodynamic calculation of methane combined reforming to synthesis gas process based on Aspen Plus [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2890-2900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |