Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4587-4599.DOI: 10.16085/j.issn.1000-6613.2020-1923
• Resources and environmental engineering • Previous Articles Next Articles
TANG Chuiyun1,2,3(), ZHONG Juan1,2,3, LYU Ying1,2,3, ZHANG Mingjiang1,2,4, SUN Juan5, LIU Xingyu1,2,4()
Received:
2020-09-21
Online:
2021-08-12
Published:
2021-08-05
Contact:
LIU Xingyu
唐垂云1,2,3(), 钟娟1,2,3, 吕莹1,2,3, 张明江1,2,4, 孙娟5, 刘兴宇1,2,4()
通讯作者:
刘兴宇
作者简介:
唐垂云(1996—),男,硕士研究生,研究方向为环境污染微生物修复。E-mail:基金资助:
CLC Number:
TANG Chuiyun, ZHONG Juan, LYU Ying, ZHANG Mingjiang, SUN Juan, LIU Xingyu. Research progress of uranium contaminated soil remediation technology[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4587-4599.
唐垂云, 钟娟, 吕莹, 张明江, 孙娟, 刘兴宇. 土壤中铀污染修复技术研究进展[J]. 化工进展, 2021, 40(8): 4587-4599.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1923
1 | BRUGGE D, DE LEMOS J L, OLDMIXON B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review[J]. Reviews on Environmental Health, 2005, 20(3): 177-194. |
2 | 孟佑婷, 张丰收, 王平, 等. 细菌还原U(Ⅵ)分子生物学机理的研究进展[J]. 中国环境科学, 2020, 40(1): 422-430. |
MENG Youting, ZHANG Fengshou, WANG Ping, et al. Review on the molecular mechanisms of U(Ⅵ) bioreduction[J]. China Environmental Science, 2020, 40(1): 422-430. | |
3 | 郑黄婷, 许明发, 向辉云, 等. 铀尾矿库辐射安全问题的现状分析及对策[J]. 核安全, 2019, 18(2): 9-13. |
ZHENG Huangting, XU Mingfa, XIANG Huiyun, et al. Status analysis and countermeasures for radiation safety of uranium tailings pond[J]. Nuclear Safety, 2019, 18(2): 9-13. | |
4 | WANG W H, LUO X G, LIU L, et al. Ramie (Boehmeria nivea)’s uranium bioconcentration and tolerance attributes[J]. Journal of Environmental Radioactivity, 2018, 184/185: 152-157. |
5 | WANG W H, LUO X G, WANG Z, et al. Heavy metal and metalloid contamination assessments of soil around an abandoned uranium tailings pond and the contaminations’ spatial distribution and variability[J]. International Journal of Environmental Research and Public Health, 2018, 15(11): E2401. |
6 | FATHI R A, MATTI L Y, AL-SALIH H S, et al. Environmental pollution by depleted uranium in Iraq with special reference to Mosul and possible effects on cancer and birth defect rates[J]. Medicine, Conflict and Survival, 2013, 29(1): 7-25. |
7 | BANALA U K, DAS N, TOLETI S R. Microbial interactions with uranium: towards an effective bioremediation approach[J]. Environmental Technology & Innovation, 2020, 21: 1-17. |
8 | MARKICH S J. Uranium speciation and bioavailability in aquatic systems: an overview[J]. The Scientific World Journal, 2002, 2: 707-729. |
9 | 周仲魁, 孙占学, 郑立莉, 等. 某铀矿区放射性核素对土壤微生物活性的影响研究[J]. 有色金属(冶炼部分), 2018(4): 75-80. |
ZHOU Zhongkui, SUN Zhanxue, ZHENG Lili, et al. Effects of radionuclides on soil microbial activity in a uranium mining area[J]. Nonferrous Metals (Extractive Metallurgy), 2018(4): 75-80. | |
10 | KENAROVA A, RADEVA G, DANOVA I, et al. Soil bacterial abundance and diversity of uranium impacted area in north western pirin mountain[J]. Biotechnology & Biotechnological Equipment, 2010, 24(S1): 469-473. |
11 | 钟娟, 刘兴宇, 张明江, 等. 铀污染的微生物修复技术研究进展[J]. 稀有金属, 2021, 45(1): 93-105. |
ZHONG Juan, LIU Xingyu, ZHANG Mingjiang, et al. Research progress of bioremediation technology for uranium contamination[J]. Chinese Journal of Rare Metals, 2021, 45(1): 93-105. | |
12 | 张琼, 王博, 王亮, 等. 切尔诺贝利和福岛核事故后放射性土壤修复研究进展[J]. 环境与可持续发展, 2016, 41(5): 117-121. |
ZHANG Qiong, WANG Bo, WANG Liang, et al. Study on remediation of contaminated soil after the accident of Chernobyl and Fukushima[J]. Environment and Sustainable Development, 2016, 41(5): 117-121. | |
13 | 王亮, 王喆, 余少青, 等. 日本福岛事故土壤放射性污染状况及应对措施[C]//2012中国环境科学学会学术年会. 南宁, 2012. |
WANG L, WANG Z, YU S Q, et al. The situation of soil radioactive contamination after the Fukushima accident in Japan and the countermeasures[C]//Annual Meeting of Chinese Society for Environment Science, Nanning, 2012. | |
14 | 周书葵, 肖江, 刘迎久, 等. 电动修复过程中电解质浓度对U(Ⅵ)迁移和能耗的影响[J]. 中国环境科学, 2019, 39(12): 5228-5239. |
ZHOU Shukui, XIAO Jiang, LIU Yingjiu, et al. Effect of electrolyte concentration on U(Ⅵ) migration behavior and energy utilization in electrokinetic remediation process[J]. China Environmental Science, 2019, 39(12): 5228-5239. | |
15 | 万小岗, 赵颜红, 习成成, 等. 铀污染土壤淋洗去污实验研究[J]. 环境工程, 2013, 31(S1): 710-712. |
WAN Xiaogang, ZHAO Yanhong, XI Chengcheng, et al. Study on the washing decontamination of uranium-contaminated soil[J]. Environmental Engineering, 2013, 31(S1): 710-712. | |
16 | 蒋海燕, 张伟, 周书葵, 等. 腐殖酸修饰凹凸棒对U(Ⅵ)的吸附性能及机理[J]. 环境工程学报, 2015, 9(2): 705-710. |
JIANG Haiyan, ZHANG Wei, ZHOU Shukui, et al. Adsorption properties and mechanism of U(Ⅵ) onto humic acid/attapulgite composites[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 705-710. | |
17 | 周书葵, 侯康龙, 刘迎九, 等. 不同固定剂对铀尾矿库中铀稳定效果的试验研究[J]. 原子能科学技术, 2018, 52(4): 583-589. |
ZHOU Shukui, HOU Kanglong, LIU Yingjiu, et al. Experimental study on immobilization of uranium in uranium tailing pond using different fixatives[J]. Atomic Energy Science and Technology, 2018, 52(4): 583-589. | |
18 | 李晓宝, 董焕焕, 任丽霞, 等. 螯合剂修复重金属污染土壤联合技术研究进展[J]. 环境科学研究, 2019, 32(12): 1993-2000. |
LI Xiaobao, DONG Huanhuan, REN Lixia, et al. Effects of chelating agent combination technologies on soil contaminated by heavy metals[J]. Research of Environmental Sciences, 2019, 32(12): 1993-2000. | |
19 | KANTAR C, HONEYMAN B D. Citric acid enhanced remediation of soils contaminated with uranium by soil Flushing and soil washing[J]. Journal of Environmental Engineering, 2006, 132(2): 247-255. |
20 | CREAN D E, LIVENS F R, SAJIH M, et al. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction[J]. Journal of Hazardous Materials, 2013, 263: 382-390. |
21 | FRANCIS C W, TIMPSON M E, WILSON J H. Bench- and pilot-scale studies relating to the removal of uranium from uranium-contaminated soils using carbonate and citrate lixiviants[J]. Journal of Hazardous Materials, 1999, 66(1/2): 67-87. |
22 | GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440-460. |
23 | KIM Kyeong-Hee, KIM Soon-Oh, KIM Kyoung-Woong. Removal of uranium from kaolinite by electrokinetic remediation[J]. Journal of Korean Institute of Mineral and Energy Resources Engineering, 2003, 38(10): 2137-2163. |
24 | XU Y, ZONDLO J W, FINKLEA H O, et al. Electrosorption of uranium on carbon fibers as a means of environmental remediation[J]. Fuel Processing Technology, 2000, 68(3): 189-208. |
25 | PARK H M, KIM G N, KIM S S, et al. Improvement of pilot-scale electrokinetic remediation technology for uranium removal[J]. Journal of the Korean Radioactive Waste Society, 2013, 11(2): 77-83. |
26 | SHI ZH, DOU TJ, ZHANG H, et al. Electrokinetic remediation of uranium contaminated soil by ion exchange membranes [J]. Cell, 2016, 15(4): 5. |
27 | BUELT J L, FARNSWORTH R K. In situ vitrification of soils containing various metals[J]. Nuclear Technology, 1991, 96(2): 178-184. |
28 | SHAW P, ANDERSON B, DAVIS D. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory[R]. Office of Scientific and Technical Information (OSTI), 1993. |
29 | JANTZEN C M, PICKETT J B, RAMSEY W G, et al. Treatability studies on mixed (radioactive and hazardous) M-area F006 waste sludge: vitrification via the reactive additive stabilization process (RASP)[EB/OL]. 6 |
_waste_sludge_Vitrification_via_the_Reactive_Additive_Stabilization_Process_RASP. | |
30 | 王贝贝, 朱湖地, 陈静. 重金属污染土壤微波玻璃化技术研究[J]. 环境工程, 2013, 31(2): 96-98, 108. |
WANG Beibei, ZHU Hudi, CHEN Jing. Study on microwave vitrification technology of heavy metal contaminated soil[J]. Environmental Engineering, 2013, 31(2): 96-98, 108. | |
31 | CHEN S Z, SHU X Y, TANG H X, et al. Microwave vitrification of uranium-contaminated soil for nuclear test site and chemical stability[J]. Ceramics International, 2019, 45(10): 13334-13339. |
32 | SHU X Y, LI Y P, HUANG W X, et al. Rapid vitrification of uranium-contaminated soil: effect and mechanism[J]. Environmental Pollution, 2020, 263: 114539. |
33 | CHOUDHARY S, SAR P. Interaction of uranium (Ⅵ) with bacteria: potential applications in bioremediation of U contaminated oxic environments[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 347-355. |
34 | ZHOU C, VANNELA R, HYUN S P, et al. Growth of desulfovibrio vulgaris when respiring U(Ⅵ) and characterization of biogenic uraninite[J]. Environmental Science & Technology, 2014, 48(12): 6928-6937. |
35 | CHABALALA S, CHIRWA E M N. Uranium (Ⅵ) reduction and removal by high performing purified anaerobic cultures from mine soil[J]. Chemosphere, 2010, 78(1): 52-55. |
36 | WU Q, SANFORD R A, LÖFFLER F E. Uranium(Ⅵ) reduction by Anaeromyxobacter dehalogenans strain 2CP-C[J]. Applied & Environmental Microbiology, 2006, 72(5): 3608-3614. |
37 | MALEKZADEH F, FARAZMAND A, GHAFOURIAN H, et al. Uranium accumulation by a bacterium isolated from electroplating effluent[J]. World Journal of Microbiology and Biotechnology, 2002, 18(4): 295-302. |
38 | KATSENOVICH Y, CARVAJAL D, GUDURU R, et al. Assessment of the resistance to uranium (Ⅵ) exposure by Arthrobacter sp. isolated from Hanford site soil[J]. Geomicrobiology Journal, 2013, 30(2): 120-130. |
39 | CHOUDHARY S, SAR P. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste[J]. Journal of Hazardous Materials, 2011, 186(1): 336-343. |
40 | BEAZLEY M J, MARTINEZ R J, SOBECKY P A, et al. Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface[J]. Environmental Science & Technology, 2007, 41(16): 5701-5707. |
41 | CELIK F, CAMAS M, KYEREMEH K, et al. Microbial sorption of uranium using Amycolatopsis sp. K47 isolated from uranium deposits[J]. Water, Air & Soil Pollution, 2018, 229(4): 1-14. |
42 | DING L, TAN W F, XIE S B, et al. Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp. - coated biochar as green trapping agent[J]. Environmental Pollution, 2018, 242: 778-787. |
43 | HUANG W B, CHENG W C, NIE X Q, et al. Microscopic and spectroscopic insights into uranium phosphate mineral precipitated by bacillus mucilaginosus[J]. ACS Earth and Space Chemistry, 2017, 1(8): 483-492. |
44 | LI X L, DING C C, LIAO J L, et al. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3[J]. Journal of Environmental Sciences, 2016, 41: 162-171. |
45 | KUMAR R, ACHARYA C, JOSHI S R. Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(Ⅵ) bioadsorption[J]. The Journal of Microbiology, 2011, 49(4): 568-574. |
46 | ZHAO C S, LIU J, LI X Y, et al. Biosorption and bioaccumulation behavior of uranium on Bacillus sp. dwc-2: investigation by Box-Behenken design method[J]. Journal of Molecular Liquids, 2016, 221: 156-165. |
47 | 吴唯民, CARLEY Jack, WATSON David, 等. 地下水铀污染的原位微生物还原与固定: 在美国能源部田纳西橡树岭放射物污染现场的试验[J]. 环境科学学报, 2011, 31(3): 449-459. |
WU Weimin, CARLEY J, WATSON D, et al. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee[J]. Acta Scientiae Circumstantiae, 2011, 31(3): 449-459. | |
48 | GHASEMI R, FATEMI F, MIR-DERIKVAND M, et al. Evaluation of mtr cluster expression in Shewanella RCRI7 during uranium removal[J]. Archives of Microbiology, 2020, 202(10): 2711-2726. |
49 | SHI L, FREDRICKSON J K, ZACHARA J M. Genomic analyses of bacterial porin-cytochrome gene clusters[J]. Front Microbiol, 2014, 5: 657. |
50 | MERROUN M L, SELENSKA-POBELL S. Bacterial interactions with uranium: an environmental perspective[J]. Journal of Contaminant Hydrology, 2008, 102(3/4): 285-295. |
51 | BEAZLEY M J, MARTINEZ R J, SOBECKY P A, et al. Nonreductive biomineralization of uranium(Ⅵ) phosphate via microbial phosphatase activity in anaerobic conditions[J]. Geomicrobiology Journal, 2009, 26(7): 431-441. |
52 | EHRLICH Henry Lutz, NEWMAN Dianne K. Geomicrobiology[M]. 5th ed. Florida: CRC Press, 2009. |
53 | NEWSOME L, MORRIS K, LLOYD J R. Uranium biominerals precipitated by an environmental isolate of serratia under anaerobic conditions[J]. PLoS One, 2015, 10(7): e0132392. |
54 | MACASKIE L E, EMPSON R M, CHEETHAM A K, et al. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4[J]. Science, 1992, 257(5071): 782-784. |
55 | LLOYD J R, MACASKIE L E. Bioremediation of radionuclide-containing wastewaters[M]. Washington D C: ASM Press, 2014: 277-327. |
56 | LEDERER F L, WEINERT U, GÜNTHER T J, et al. Identification of multiple putative S-layer genes partly expressed by Lysinibacillus sphaericus JG-B53[J]. Microbiology, 2013, 159(6): 1097-1108. |
57 | 司慧, 罗学刚, 望子龙, 等. 枯草芽孢杆菌对铀的富集及机理研究[J]. 中国农学通报, 2017, 33(8): 31-38. |
SI Hui, LUO Xuegang, WANG Zilong, et al. Biosorption of uranium by bacillus subtilis and its mechanism[J]. Chinese Agricultural Science Bulletin, 2017, 33(8): 31-38. | |
58 | LI X L, DING C C, LIAO J L, et al. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism[J]. Journal of Environmental Radioactivity, 2014, 135: 6-12. |
59 | MALAVIYA P, SINGH A. Phytoremediation strategies for remediation of uranium-contaminated environments: a review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(24): 2575-2647. |
60 | ALSABBAGH A H, ABUQUDAIRA T M. Phytoremediation of Jordanian uranium-rich soil using sunflower[J]. Water, Air & Soil Pollution, 2017, 228(6): 1-9. |
61 | 聂小琴, 丁德馨, 李广悦, 等. 某铀尾矿库土壤核素污染与优势植物累积特征[J]. 环境科学研究, 2010, 23(6): 719-725. |
NIE Xiaoqin, DING Dexin, LI Guangyue, et al. Soil radionuclide contamination and radionuclide accumulation characteristics of competitive plants in a uranium tailings repository in South China[J]. Research of Environmental Sciences, 2010, 23(6): 719-725. | |
62 | SELVAKUMAR R, RAMADOSS G, MENON M P, et al. Challenges and complexities in remediation of uranium contaminated soils: a review[J]. Journal of Environmental Radioactivity, 2018, 192: 592-603. |
63 | JAGETIYA B, SHARMA A. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation[J]. Chemosphere, 2013, 91(5): 692-696. |
64 | MIHALÍK J, TLUSTOŠ P, SZAKOVÁ J. Comparison of willow and sunflower for uranium phytoextraction induced by citric acid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 285(2): 279-285. |
65 | ABREU M M, NEVES O, MARCELINO M. Yield and uranium concentration in two lettuce (Lactuca sativa L.) varieties influenced by soil and irrigation water composition, and season growth[J]. Journal of Geochemical Exploration, 2014, 142: 43-48. |
66 | XU J, GONG Y B, ZHANG Q C. Differences of patience and uranium uptake and accumulation of uranium in soil for three plants[J]. Chemical Research and Application, 2009, 21: 322-326. |
67 | TANG L, BAI Y, DENG C. Restoration of uranium-contaminated soil hyperaccumulator and accumulation characteristics of the screening[J]. Nuclear Technology, 2009, 32: 136-140. |
68 | CHANG P C, KIM K W, YOSHIDA S, et al. Uranium accumulation of crop plants enhanced by citric acid[J]. Environmental Geochemistry and Health, 2005, 27(5/6): 529-538. |
69 | SHAHANDEH H, HOSSNER L R. Role of soil properties in phytoaccumulation of uranium[J]. Water, Air & Soil Pollution, 2002, 141(1/2/3/4): 165-180. |
70 | HUANG J W, BLAYLOCK M J, KAPULNIK Y, et al. Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants[J]. Environmental Science & Technology, 1998, 32(13): 2004-2008. |
71 | 陈保冬, 陈梅梅, 白刃. 丛枝菌根在治理铀污染环境中的潜在作用[J]. 环境科学, 2011, 32(3): 809-816. |
CHEN Baodong, CHEN Meimei, BAI Ren. Potential role of arbuscular mycorrhiza in bioremediation of uranium contaminated environments[J]. Environmental Science, 2011, 32(3): 809-816. | |
72 | 沙银花, 胡南, 陈思羽, 等. 雀稗-博落回间作强化修复铀污染土壤的研究[J]. 南华大学学报(自然科学版), 2019, 33(2): 22-26, 32. |
SHA Yinhua, HU Nan, CHEN Siyu, et al. Enhanced phytoremediation of uranium contaminated soils with paspalum scrobiculatum-macleaya cordata intercrop[J]. Journal of University of South China (Science and Technology), 2019, 33(2): 22-26, 32. | |
73 | WEIERSBYE I M, STRAKER C J, PRZYBYLOWICZ W J. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 1999, 158(1/2/3/4): 335-343. |
74 | REN C G, KONG C C, WANG S X, et al. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium[J]. Chemosphere, 2019, 217: 773-779. |
75 | LOZANO J C, BLANCO RODRÍGUEZ P, VERA TOMÉ F, et al. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments[J]. Journal of Hazardous Materials, 2011, 198: 224-231. |
76 | HAN Y. Phytoextraction using citric acid for enhanced removal of uranium from soil[J]. Journal of the Geological Society of Korea, 2014, 50(4): 501. |
77 | BAHEMMAT M, FARAHBAKHSH M, KIANIRAD M. Humic substances-enhanced electroremediation of heavy metals contaminated soil[J]. Journal of Hazardous Materials, 2016, 312: 307-318. |
78 | POPOV K I, YACHMENEV V G, BARINOV A. Enhancement of the electrokinetic remediation of soil contaminated with U(Ⅵ) by chelating agents[M]. Washington D C: American Chemical Society, 2005: 398-420. |
79 | JERDEN J L, SINHA A K. Geochemical coupling of uranium and phosphorous in soils overlying an unmined uranium deposit: Coles Hill, Virginia[J]. Journal of Geochemical Exploration, 2006, 91(1/2/3): 56-70. |
80 | SHENG L, SZYMANOWSKI J, FEIN J B. The effects of uranium speciation on the rate of U(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3558-3567. |
81 | LAURETTE J, LARUE C, MARIET C, et al. Influence of uranium speciation on its accumulation and translocation in three plant species: oilseed rape, sunflower and wheat[J]. Environmental and Experimental Botany, 2012, 77: 96-107. |
82 | 刘军, 张志宾, 陈金和, 等. 钙-铀-碳酸络合物对红土吸附铀性能的影响[J]. 原子能科学技术, 2015, 49(8): 1359-1365. |
LIU Jun, ZHANG Zhibin, CHEN Jinhe, et al. Effect of calcium-uranyl-carbonate complex on adsorption of uranium on red soil[J]. Atomic Energy Science and Technology, 2015, 49(8): 1359-1365. | |
83 | ZOU C, SHA Y H, DING D X, et al. Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum[J]. Chemosphere, 2019, 224: 316-323. |
84 | YAMAGUCHI N, KAWASAKI A, IIYAMA I. Distribution of uranium in soil components of agricultural fields after long-term application of phosphate fertilizers[J]. Science of the Total Environment, 2009, 407(4): 1383-1390. |
85 | ZOU C, SHA Y H, DING D X, et al. Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum[J]. Chemosphere, 2019, 224: 316-323. |
86 | BEDNAR A J, MEDINA V F, ULMER-SCHOLLE D S, et al. Effects of organic matter on the distribution of uranium in soil and plant matrices[J]. Chemosphere, 2007, 70(2): 237-247. |
87 | MEHTA V S, MAILLOT F, WANG Z M, et al. Transport of U(Ⅵ) through sediments amended with phosphate to induce in situ uranium immobilization[J]. Water Research, 2015, 69: 307-317. |
88 | JOSEPH C, SCHMEIDE K, SACHS S, et al. Sorption of uranium (Ⅵ) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water[J]. Chemical Geology, 2011, 284(3/4): 240-250. |
89 | STOJANOVIĆ M, STEVANOVIĆ D, MILOJKOVIĆ J, et al. Influence of soil type and physical-chemical properties on uranium sorption and bioavailability[J]. Water, Air & Soil Pollution, 2012, 223(1): 135-144. |
90 | SCHINDLER M, LEGRAND C A, HOCHELLA M F. Alteration, adsorption and nucleation processes on clay-water interfaces: mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale[J]. Geochimica et Cosmochimica Acta, 2015, 153: 15-36. |
91 | SHAHANDEH H, HOSSNER L R. Role of soil properties in phytoaccumulation of uranium[J]. Water, Air & Soil Pollution, 2002, 141(1/2/3/4): 165-180. |
92 | ECHEVARRIA G, SHEPPARD M I, MOREL J. Effect of pH on the sorption of uranium in soils[J]. Journal of Environmental Radioactivity, 2001, 53(2): 257-264. |
93 | XIE J C, LIN J F, ZHOU X H. pH-Dependent microbial reduction of uranium (Ⅵ) in carbonate-free solutions: UV-vis, XPS, TEM, and thermodynamic studies[J]. Environmental Science and Pollution Research, 2018, 25(22): 22308-22317. |
94 | BEAZLEY M J, MARTINEZ R J, WEBB S M, et al. The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5648-5663. |
[1] |
YU Guanlong, PENG Haiyuan, WANG Shitao, WANG Guoliang, CHEN Hong, DU Chunyan, LIU Yuanyuan, SUN Shiquan, YU Li’e, WANG Jianwu.
Performance and mechanism of immobilized biological adsorbent for Cd( |
[2] | BAO Qinghua, HUANG Lixin, XIU Jianlong, YU Li, CUI Qingfeng, MA Yuandong, YI Lina. Development in the biological treatment of oily sludge in oil and gas fields [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2762-2773. |
[3] | TIAN Kun, YAO Dandan, ZHAO Yuantian, GUO Lili, DONG Yuanhua, LIU Yun. Advances in 1,4-dioxane remediation methods: a review [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5708-5719. |
[4] | Yan JIANG,Heping ZHOU,Zhe ZHANG,Hongbing LIU,Shunxiang SHEN. Bioremediation of contaminated sites by petroleum hydrocarbon under low temperature environment [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 419-428. |
[5] | Shuo SUN,Qiyou LIU,Shuiquan CHEN,Chaocheng ZHAO,Wenhe YU. Optimization for degradation of total petroleum hydrocarbon by the strain L-2 with response surface methodology [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5512-5518. |
[6] | JIANG Yan, ZHANG Xiaohua, LIANG Xinyuan, ZHANG Xianming. Biotechnological application to ground processing and underground mining in oil field [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3383-3391. |
[7] | WU Zuojun,LU Diannan,ZHANG Minlian,LIU Zheng. Progress in applications of microbiological molecular ecology in bioremediation of petroleum contaminated soil [J]. Chemical Industry and Engineering Progree, 2010, 29(5): 789-. |
[8] | HAN Huilong,LIU Zheng. Molecular biology techniques in bioremediation of soil:Current status and future perspectives [J]. Chemical Industry and Engineering Progree, 2007, 26(6): 782-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |