Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2762-2773.DOI: 10.16085/j.issn.1000-6613.2020-1299
• Resources and environmental engineering • Previous Articles Next Articles
BAO Qinghua1,2(), HUANG Lixin3(), XIU Jianlong3, YU Li3, CUI Qingfeng3, MA Yuandong3, YI Lina3
Received:
2020-07-09
Online:
2021-05-24
Published:
2021-05-06
Contact:
HUANG Lixin
包清华1,2(), 黄立信3(), 修建龙3, 俞理3, 崔庆锋3, 马原栋3, 伊丽娜3
通讯作者:
黄立信
作者简介:
包清华(1991—),女,博士研究生,研究方向为含油污泥生物处理。E-mail:基金资助:
CLC Number:
BAO Qinghua, HUANG Lixin, XIU Jianlong, YU Li, CUI Qingfeng, MA Yuandong, YI Lina. Development in the biological treatment of oily sludge in oil and gas fields[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2762-2773.
包清华, 黄立信, 修建龙, 俞理, 崔庆锋, 马原栋, 伊丽娜. 油气田含油污泥生物处理技术研究进展[J]. 化工进展, 2021, 40(5): 2762-2773.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1299
处理方法 | 技术原理 | 优点 | 缺点 |
---|---|---|---|
脱水干化/填埋 | 机械分离降低含水率,晾晒风化,挖坑填埋 | 工艺简单 | 效果差,长期污染 |
溶剂萃取 | 用有机溶剂萃取石油烃(PHC),达到油、泥分离 | 普适性强,溶剂可循环利用 | 溶剂易挥发,有毒,过程复杂 |
焚烧 | 高温燃烧 | 技术成熟,处理彻底 | 造成二次污染,成本高,能耗大 |
高温热解法 | 无氧环境中,间接加热到400~500℃,转化为气态,再冷却为油相 | 回收率高,处理彻底,经济,环保 | 设备成本高,能耗大,操作复杂 |
热化学洗油+ 离心脱水 | 经加热、加化学试剂,洗出PHC,通过絮凝、沉降、离心,实现油、水、泥分离 | 适应性强,回收率高,技术成熟 | 成本高,工艺复杂,造成二次污染 |
污泥调剖 | 与乳化剂、 稳定剂混合配制成高黏度的悬浮液,注入油气田地层 | 制备简单,容易实施 | 无法回收原油 |
超声波处理 | 通过机械振动和加热降低原油黏度和油水界面膜刚性,增加液滴流动性,促使聚结 | 成本较低,设备简单,适应性好 | 对超声波的声强、处理时间等参数要求严格 |
生物处理法 | 微生物在生长过程中利用PHC为碳源,转化为CO2和H2O | 环境友好,处理彻底,经济,高效 | 周期长,不适合用于高含油污泥,占地面积大,技术不成熟 |
处理方法 | 技术原理 | 优点 | 缺点 |
---|---|---|---|
脱水干化/填埋 | 机械分离降低含水率,晾晒风化,挖坑填埋 | 工艺简单 | 效果差,长期污染 |
溶剂萃取 | 用有机溶剂萃取石油烃(PHC),达到油、泥分离 | 普适性强,溶剂可循环利用 | 溶剂易挥发,有毒,过程复杂 |
焚烧 | 高温燃烧 | 技术成熟,处理彻底 | 造成二次污染,成本高,能耗大 |
高温热解法 | 无氧环境中,间接加热到400~500℃,转化为气态,再冷却为油相 | 回收率高,处理彻底,经济,环保 | 设备成本高,能耗大,操作复杂 |
热化学洗油+ 离心脱水 | 经加热、加化学试剂,洗出PHC,通过絮凝、沉降、离心,实现油、水、泥分离 | 适应性强,回收率高,技术成熟 | 成本高,工艺复杂,造成二次污染 |
污泥调剖 | 与乳化剂、 稳定剂混合配制成高黏度的悬浮液,注入油气田地层 | 制备简单,容易实施 | 无法回收原油 |
超声波处理 | 通过机械振动和加热降低原油黏度和油水界面膜刚性,增加液滴流动性,促使聚结 | 成本较低,设备简单,适应性好 | 对超声波的声强、处理时间等参数要求严格 |
生物处理法 | 微生物在生长过程中利用PHC为碳源,转化为CO2和H2O | 环境友好,处理彻底,经济,高效 | 周期长,不适合用于高含油污泥,占地面积大,技术不成熟 |
种类 | 制造微生物 | 类型 | 表面张力 /mN·m-1 | 界面张力 /mN·m-1 | CMC /mg·L-1 | HLB① |
---|---|---|---|---|---|---|
鼠李糖脂 | 假单胞菌/伯克氏菌类 | 阴离子 | 25~30[ | 0.001~4.0[ | 5~2000[ | 10~15[ |
槐糖脂 | 酵母菌类 | 阴离子/非离子 | 30~37[ | 1.0~2.0[ | 17~100[ | 9~13[ |
海藻糖脂 | 念珠菌/红球菌/放线菌 | 非离子 | 27.9~36[ | 5~17[ | 4~37[ | 11[ |
脂肽 | 芽孢杆菌/链霉素/假单胞菌/沙雷氏菌/曲霉菌/游动放线菌 | 非离子 | 27~32[ | <1[ | 23~160[ | 17[ |
种类 | 制造微生物 | 类型 | 表面张力 /mN·m-1 | 界面张力 /mN·m-1 | CMC /mg·L-1 | HLB① |
---|---|---|---|---|---|---|
鼠李糖脂 | 假单胞菌/伯克氏菌类 | 阴离子 | 25~30[ | 0.001~4.0[ | 5~2000[ | 10~15[ |
槐糖脂 | 酵母菌类 | 阴离子/非离子 | 30~37[ | 1.0~2.0[ | 17~100[ | 9~13[ |
海藻糖脂 | 念珠菌/红球菌/放线菌 | 非离子 | 27.9~36[ | 5~17[ | 4~37[ | 11[ |
脂肽 | 芽孢杆菌/链霉素/假单胞菌/沙雷氏菌/曲霉菌/游动放线菌 | 非离子 | 27~32[ | <1[ | 23~160[ | 17[ |
BSF名称 | 典型结构 |
---|---|
鼠李糖脂 | |
槐糖脂 | |
海藻糖脂 | |
脂肽 |
BSF名称 | 典型结构 |
---|---|
鼠李糖脂 | |
槐糖脂 | |
海藻糖脂 | |
脂肽 |
技术分类 | 优点 | 缺点 |
---|---|---|
地耕法 | 成本较低,操作简单,能耗低,处理量大 | ①易受气候条件影响;②存在二次污染;③需要面积大;④耗时 |
堆肥法 | ①保持代谢过程中产生的热量;②环保,VOCs的排放通过辅助收集单元控制;③易于设计和实施 | ①处理能力较差;②需要面积较大;③处理时间较长 |
生物泥浆反应器法 | ①快速有效;②需要土地面积小 | ①处理成本高;②需要预处理;③产生VOCs需要处理;④处理后,混合物需要脱水,增加成本 |
技术分类 | 优点 | 缺点 |
---|---|---|
地耕法 | 成本较低,操作简单,能耗低,处理量大 | ①易受气候条件影响;②存在二次污染;③需要面积大;④耗时 |
堆肥法 | ①保持代谢过程中产生的热量;②环保,VOCs的排放通过辅助收集单元控制;③易于设计和实施 | ①处理能力较差;②需要面积较大;③处理时间较长 |
生物泥浆反应器法 | ①快速有效;②需要土地面积小 | ①处理成本高;②需要预处理;③产生VOCs需要处理;④处理后,混合物需要脱水,增加成本 |
石油污染物 | 微生物名称 |
---|---|
脂肪族化合物 | 不动杆菌、芽孢杆菌、假单胞菌、红球菌、微球菌、脱硫藻、脱球菌、念珠菌、假酶菌 |
单环芳烃 | 不动杆菌、芽孢杆菌、假单胞菌、红球菌、鞘氨醇杆菌、远古细菌 |
多环芳烃 | 芽孢杆菌、假单胞菌 |
胶质 | 假单胞菌、肠杆菌、莫拉克斯氏菌 |
沥青质 | 芽孢杆菌、短杆菌、葡萄球菌和棒状杆菌、黄曲霉、黑曲霉 |
石油污染物 | 微生物名称 |
---|---|
脂肪族化合物 | 不动杆菌、芽孢杆菌、假单胞菌、红球菌、微球菌、脱硫藻、脱球菌、念珠菌、假酶菌 |
单环芳烃 | 不动杆菌、芽孢杆菌、假单胞菌、红球菌、鞘氨醇杆菌、远古细菌 |
多环芳烃 | 芽孢杆菌、假单胞菌 |
胶质 | 假单胞菌、肠杆菌、莫拉克斯氏菌 |
沥青质 | 芽孢杆菌、短杆菌、葡萄球菌和棒状杆菌、黄曲霉、黑曲霉 |
1 | 吴少林,孙智毅,楼紫阳. 含油污泥研究现状及发展方向[J]. 有色冶金设计与研究, 2017, 38(6): 114-118. |
WU Shaolin, SUN Zhiyi, LOU Ziyang. The development of oily sludge treatment process in oilfield and refinery[J]. Nonferrous Metals Engineering & Research, 2017, 38(6): 114-118. | |
2 | SILVA L J D,ALVES F C,FRANCA F P D, et al. A review of the technological solutions for the treatment of oily sludges from petroleum refineries[J]. Waste Management & Research, 2012, 30(10): 1016-1030. |
3 | RAMASWAMY B,KAR D D,DE S. A study on recovery of oil from sludge containing oil using froth flotation[J]. Journal of Environmental Management, 2007, 85(1): 150-154. |
4 | TIAN Y,MCGILL W B,WHITCOMBE T W, et al. Ionic liquid-enhanced solvent extraction for oil recovery from oily sludge[J]. Energy & Fuels, 2019, 33: 3429-3438. |
5 | HE S L,TAN X C,HU X, et al. Effect of ultrasound on oil recovery from crude oil containing sludge[J]. Environmental Technology, 2019, 40(11): 1-7. |
6 | NEJAD Y S,JAAFARZADEH N,AHMADI M, et al. Remediation of oily sludge wastes using biosurfactant produced by bacterial isolate pseudomonas balearica strain Z8[J]. Journal of Environmental Health Science and Engineering, 2020, 5: 1-9. |
7 | 李文英, 李阳, 马艳飞, 等. 含油污泥资源化处理方法进展[J]. 化工进展, 2020, 39(10): 4191-4199. |
LI Wenying, LI Yang, MA Yanfei, et al. Progress of resource treatment methods for oily sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4191-4199. | |
8 | 新疆吾尔自治区环境保护厅. 油气田含油污泥综合利用污染控制要求: [S]. 乌鲁木齐: 新疆维吾尔自治区质量技术监督局, 2017. |
Environmental Protection Department of Xinjiang Wuer Autonomous Region. Pollution control requirements for comprehensive utilizition of oil and gas field oily sludge: [S]. Urumqi: Quality and Technical Supervision Bureau of Xinjiang Uygur Autonomous Region, 2017. | |
9 | 王会, 谢康, 向龙斌. 关于含油污泥处理现状研究[J]. 环境与可持续发展, 2016, 5: 122-127. |
WANG Hui, XIE Kang, XIANG Longbin. Research on the status quo of oily sludge treatment[J]. Environment and Sustainable Development, 2016, 41(5):122-127. | |
10 | JARVIS F G, JOHNSON M J. A glyco-lipide produced by Pseudomonas aeruginosa[J]. Journal of the American Chemical Society, 1949, 71(12): 4124-4126. |
11 | BANAT I M,SAMARAH N,MURAD M, et al. Biosurfactant production and use in oil tank clean-up[J]. Technical Communication, 1991, 7: 80-88. |
12 | NOORDMAN W H,J-W BRUINING,WIETZES P, et al. Facilitated transport of a PAH mixture by a rhamnolipid biosurfactant in porous silica matrices[J]. Journal of Contaminant Hydrology, 2000, 44: 119-140. |
13 | 刘佳, 李政, 李凤艳, 等. 生物表面活性剂的研究进展[J]. 2018, 356(9): 51-56. |
LIU Jia, LI Zheng, LI Fengyan, et al. Research progress of biological surfactant[J]. 2018, 356(9): 51-56. | |
14 | LIU G,ZHONG H,YANG X, et al. Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review[J]. Biotechnology and Bioengineering, 2018, 115(4): 796-814. |
15 | 马晓静. 槐糖脂合成的氮源代谢调控及槐糖脂的廉价底物生产和性质研究[D]. 济南:山东大学, 2012. |
MA Xiaojing. Nitrogen metabolic regulation of sophorolipids synthesis, characteristics of sophorolipids and sophorolipids production from low-cost substrate[D]. Jinan: Shangdong University, 2012. | |
16 | MARQUES A M,PINAZO A,FARFAN M, et al. The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7[J]. Chemistry and Physics of Lipids, 2009, 158(2): 110-117. |
17 | PARRA J L,GUINEA J,MANRESA M A, et al. Chemical characterization and physicochemical behavior of biosurfactants[J]. Journal of the American Oil Chemists Society, 1989, 66(1): 141-145. |
18 | GUDIñA E J,RODRIGUES A I,ALVES E, et al. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation[J]. Bioresource Technology, 2015, 177: 87-93. |
19 | 吴虹, 汪薇, 韩双艳. 鼠李糖脂生物表面活性剂的研究进展[J]. 微生物学通报, 2007, 34(1): 148-152. |
WU Hong, WANG Wei, HAN Shuangyan. Recent progress on rhamnolipid biosurfactant[J]. Microbiology China, 2007, 34(1): 148-152. | |
20 | 刘波, 张红梅. 鼠李糖脂应用于三次采油的实验研究[J]. 油气采收率技术, 1997, 4(3): 20-25. |
LIU Bo, ZHANG Hongmei. Experimental study on application of rhamnolipid in tertiary oil recovery[J]. Petroleum Geology and Recovery Efficiency, 1997, 4(3): 20-25. | |
21 | 谈菲. 鼠李糖脂对几种直链烷烃的增溶行为研究[D]. 长沙: 湖南大学, 2014. |
TAN Fei. Research on the solubilization behavior of alkanes by rhamnolipid[D]. Changsha: Hunan University, 2014, | |
22 | 李俊超, 张卫华. 生物表面活性剂在石油污染土壤修复中的应用潜力[J]. 中国资源综合利用, 2019, 37(1): 74-76. |
LI Junchao, ZHANG Weihua. Application potential of biosurfactant in remediation of soil contaminated by petroleum[J]. China Resources Comprehensive Utilization, 2019, 37(1): 74-76. | |
23 | HIRATA Y,RYU M,ODA Y, et al. Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants[J]. Journal of Bioscience & Bioengineering, 2009, 108(2): 142-146. |
24 | ZHANG L,SOMASUNDARAN P,SINGH S K, et al. Synthesis and interfacial properties of sophorolipid derivatives[J]. 2004, 240(1/2/3): 75-82. |
25 | 宋丹丹. 生物表面活性剂复配行为及在疏水性有机污染修复中的应用[D]. 青岛: 中国海洋大学, 2013. |
SONG Dandan. Micelle behaviors of binary mixed biosurfactants and their applications in remediation of hydrophobic organics contaminated sites[D]. Qingdao: Ocean University of China, 2013. | |
26 | PEREIRA J F B,GUDIÑA E J,COSTA R, et al. Optimization and characterization of biosurfactant production by bacillus subtilis isolates towards microbial enhanced oil recovery applications[J]. Fuel, 2013, 111(9): 259-268. |
27 | MUKHERJEE S,DAS P,SIVAPATHASEKARAN C, et al. Antimicrobial biosurfactants from marine bacillus circulans: extracellular synthesis and purification[J]. Letters in Applied Microbiology, 2010, 48(3): 281-288. |
28 | 陈云瑛. 脂肽生物表面活性剂的制备、理化性质和抑菌活性研究[D]. 青岛: 中国海洋大学, 2008. |
CHEN Yunying. Studies on production、physicochemical properties and antimicrobial activity research of lipopeptide[D]. Qingdao: Ocean University of China, 2008. | |
29 | BANAT I M,FRANZETTI A,GANDOLFI I, et al. Microbial biosurfactants production, applications and future potential[J]. Appl. Microbiol. Biotechnol., 2010, 87(2): 427-444. |
30 | KANG S W,KIM Y B,SHIN J D, et al. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid[J]. Applied Biochemistry and Biotechnology, 2009, 160(3): 780-790. |
31 | LAI C C,HUANG Y C,WEI Y H, et al. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil[J]. Journal of Hazardous Materials, 2009, 167(1/3): 609-614. |
32 | PENG S,WU W,CHEN J. Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness[J]. Chemosphere, 2011, 82(8): 1173-1177. |
33 | LIU C H,ZHANG Y,SUN S, et al. Oil recovery from tank bottom sludge using rhamnolipids[J]. Journal of Petroleum Science and Engineering, 2018, 170: 14-20. |
34 | LIU X,YAO T,LAI R, et al. Recovery of crude oil from oily sludge in an oilfield by sophorolipid[J]. Petroleum Science and Technology, 2019, 37(13): 1582-1588. |
35 | 黄立信, 刘楚晗, 张尹, 等. 生物表面活性剂在含油污泥资源化回收中的应用研究[J]. 化学与生物工程, 2018, 35(9): 49-54, 59. |
HUANG Lixin, LIU Chuhan, ZHANG Yin, et al. Application of biosurfactant in oil recovery from oily sludge[J]. Chemistry &Bioengineering, 2018, 35(9): 49-54, 59. | |
36 | YAN P,LU M,YANG Q, et al. Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing pseudomonas[J]. Bioresource Technology, 2012, 116: 24-28. |
37 | KANG S W,KIM Y B,SHIN J D, et al. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid[J]. Appl. Biochem. Biotechnol., 2010, 160(3): 780-790. |
38 | WANG Z,WU T,ZHOU W, et al. Surface properties and micellar molecular interaction in binary systems of a biosurfactant sodium deoxycholate (nadc) with conventional surfactants[J]. Journal of Surfactants and Detergents, 2010, 14(3): 391-400. |
39 | 陈贤, 陈弘毅, 张贤明, 等. 复合生物表面活性剂处理含油污泥实验研究[J]. 石油与天然气化工, 2015, 44(6): 122-124. |
CHEN Xian, CHEN Hongyi, ZHANG Xianming, et al. Experimental studies on oily sludge treatment using biosurfactant complexes[J]. Chemical Engineering of Oil & Gas, 2015, 44(6): 122-124. | |
40 | 马满英, 刘有势, 施周. 生物与化学表面活性剂对多氯联苯的协同增溶作用[J]. 生态环境, 2008, 17(2): 466-470. |
MA Manying, LIU Youshi, SHI Zhou. Synergistic solubilization of biological and chemical surfactants on PCBs[J]. Ecology and Environmental Sciences, 2008, 17(2): 466-470. | |
41 | DUAN M,WANG X,FANG S, et al. Treatment of Daqing oily sludge by thermochemical cleaning method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 272-278. |
42 | 龙绛雪, 傅海燕, 高攀峰, 等. 生物-非离子型表面活性剂对土壤石油污染的清除[J]. 湖北农业科学, 2014, 53(6): 1277-1280, 1326. |
LONG Jiangxue, FU Haiyan, GAO Panfeng, et al. Removing petroleum polluted soil with biological nonionic surfactant[J]. Hubei Agricultural Sciences, 2014, 53(6): 1277-1280, 1326. | |
43 | 郑承纲. 微生物提高采收率技术研究[D]. 廊坊:中国科学院研究生院(渗流流体力学研究所), 2010. |
ZHENG Chenggang. Research on microbial enhanced oil recoery[D]. Langfang: Institute of Porous Flow & Fluid Mechanics, CAS, 2010. | |
44 | MARIN J A,HERNANDEZ T,GARCIA C. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity[J]. Environmental Research, 2005, 98(2): 185-195. |
45 | ADMON S,GREEN M,AVNIMELECH Y. Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge[J]. Bioremediation Journal, 2001, 5(3): 193-209. |
46 | MISHRA S,JYOT J,KUHAD R C, et al. In situ bioremediation potential of an oily sludge-degrading bacterial consortium[J]. Current Microbiology, 2001, 43(5): 328-335. |
47 | HEJAZI R F,HUSAIN T. Landfarm performance under arid conditions. 2. Evaluation of parameters[J]. Environmental Science & Technology, 2004, 38(8): 2457-2469. |
48 | 雷江辉. 生物热洗+微生物降解技术处理含油污泥的室内实验研究[J]. 油气田地面工程, 2020, 39(4): 40-44. |
LEI Jianghui.Laboratory experimental study of oily sludge treatment by biological heat washing and microbial degradation technology[J]. Oil-Gas Field Surface Engineering,2020,39(4):40-44. | |
49 | WANG X,WANG Q,WANG S, et al. Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge[J]. Bioresource Technology, 2012, 111(3): 308-315. |
50 | LIU W,LUO Y,YING T, et al. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes[J]. Environmental Geochemistry Health, 2010, 32(1): 23-29. |
51 | 任鹏, 李照林, 杨虎, 等. 微生物处理含油污泥工艺研究[J]. 油气田环境保护, 2017, 27(4): 15-17. |
REN Peng, LI Zhaolin, YANG Hu, et al.Study on microbial treatment of oily sludge[J]. Environmental Protection of Oil & Gas Fields,2017,4(27):15-17. | |
52 | OUYANG W,LIU H,MURYGINA V, et al. Comparison of bio-augmentation and composting for remediation of oily sludge: a field-scale study in China[J]. Process Biochemistry, 2005, 40(12): 3763-3768. |
53 | KRIIPSALU M,MARQUES M, NAMMARI R D, et al. Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics[J]. Journal of Hazardous Materials, 2007, 148(3): 616-622. |
54 | AYOTAMUNO M,OKPARANMA R,NWENEKA E, et al. Bio-remediation of a sludge containing hydrocarbons[J]. Applied Energy, 2007, 84(9): 936-943. |
55 | MACHIN-RAMIREZ C,OKOH A I,MORALES D, et al. Slurry-phase biodegradation of weathered oily sludge waste[J]. Chemosphere, 2008, 70(4): 737-744. |
56 | WARD O,SINGH A,HAMME J V Y. Accelerated biodegradation of petroleum hydrocarbon waste[J]. Journal of Industrial Microbiology & Biotechnology, 2003, 30(5): 260-270. |
57 | ATLAS R M. Microbial hydrocarbon degradation—bioremediation of oil spills[J]. Journal of Chemical Technology & Biotechnology, 1991, 52(2): 149-156. |
58 | ZHENG M,WANG W,HAYES M, et al. Degradation of Macondo 252 oil by endophytic Pseudomonas putida[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 643-648. |
59 | PAL S,KUNDU A,BANERJEE I D, et al. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment[J]. Genomics, 2017, 109(5/6): 374-382. |
60 | GHOLAMI-SHIRI J,MOWLA D,DEHGHANI S, et al. Exploitation of novel synthetic bacterial consortia for biodegradation of oily-sludge TPH of iran gas and oil refineries[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2964-2975. |
61 | GHAZALI F M,RAHMAN R N Z A,SALLEH A B, et al. Biodegradation of hydrocarbons in soil by microbial consortium[J]. International Biodeterioration & Biodegradation, 2004, 54(1): 61-67. |
62 | LEAHY J G,COLWELL R R. Microbial degradation of hydrocarbons in the environment[J]. Microbiological Reviews, 1990, 54(3): 305-315. |
63 | 冯晋阳, 吴小宁. 原油生物降解影响因素的试验研究[J]. 污染防治技术, 2009, 22(1): 1-3. |
FENG Jinyang, WU Xiaoning. Test study on influence factors of crude oil biodegradation[J]. Pollution Control Technology, 2009, 22(1): 1-3. | |
64 | 张慧慧, 宋学勇, 张忠智, 等. 石油污染土壤的生物电化学修复技术及其关键因素[J]. 化学与生物工程, 2018, 35(7): 1-5. |
ZHANG Huihui, SONG Xueyong, ZHANG Zhongzhi, et al. Bioelectrochemical remediation technology of petroleum contaminated soil and its key factors[J]. Chemistry & Bioengineering, 2018, 35(7): 1-5. | |
65 | TODA H,ITOH N. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10[J]. Journal of Bioscience and Bioengineering, 2012, 113(1): 12-19. |
66 | BESKOSKI V P,GOJGIC-CVIJOVIC G,MILIC J, et al. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment[J]. Chemosphere, 2011, 83(1): 34-40. |
67 | ZHAO D,LIU C,LIU L, et al. Selection of functional consortium for crude oil-contaminated soil remediation[J]. International Biodeterioration & Biodegradation, 2011, 65(8): 1244-1248. |
68 | DIAS R L,RUBERTO L,HERNáNDEZ E, et al. Bioremediation of an aged diesel oil-contaminated antarctic soil: evaluation of the “on site” biostimulation strategy using different nutrient sources[J]. International Biodeterioration & Biodegradation, 2012, 75: 96-103. |
69 | MARTíNEZ ÁLVAREZ L M,BALBO A LO,CORMACK W P MAC, et al. Bioremediation of a petroleum hydrocarbon-contaminated antarctic soil: optimization of a biostimulation strategy using response-surface methodology (RSM)[J]. Cold Regions Science and Technology, 2015, 119: 61-67. |
70 | VARJANI S J. Microbial degradation of petroleum hydrocarbons[J]. Bioresource Technology, 2017, 223: 277-286. |
71 | WALWORTH J,POND A,SNAPE I, et al. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil[J]. Cold Regions Science and Technology, 2007, 48(2): 84-91. |
72 | WALWORTH J,POND A,SNAPE I, et al. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil[J]. Cold Regions Science and Technology, 2007, 48(2): 84-91. |
73 | TSOMIDES H J,HUGHES J B,THOMAS J M, et al. Effect of surfactant addition on phenanthrene biodegradation in sediments[J]. Environmental Toxicology and Chemistry, 1995, 14(6): 953-959. |
74 | KUYUKINA M S,IVSHINA I B,MAKAROV S O, et al. Effect of biosurfactants on crude oil desorption and mobilization in a soil system[J]. Environment International, 2005, 31(2): 155-161. |
75 | LEE D H,CODY R D,KIM D J, et al. Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil[J]. Environment International, 2002, 27(8): 681-688. |
76 | 张丽芳,肖红,魏德洲. 表面活性剂对土壤石油污染物微生物降解的影响[J]. 辽宁化工, 2002, 31(12): 509-513. |
ZHANG Lifang, XIAO Hong, WEI Dezhou. Effects of surfactants on the microbial degradation of soil petroleum pollutants[J]. Liaoning Chemical Industry, 2002, 31(12): 509-513. | |
77 | MAKKAR R S,ROCKNE K J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Toxicology and Chemistry, 2003, 22(10): 2280-2292. |
78 | 陈忠喜,郭书海,刘广民, 等. 除油生物表面活性剂产生菌的分离及其特性[J]. 哈尔滨工业大学学报, 2007, 39(4): 586-588. |
CHEN Zhongxi, GUO Shuhai, LIU Guangmin, , et al. Isolation and characteristics of the degreasing biosurfactant bacteria[J]. Journal of Harbin Institute of Technology, 2007, 39(4): 586-588. | |
79 | ZHOU W,ZHU L. Solubilization of pyrene by anionic-nonionic mixed surfactants[J]. Journal of Hazardous Materials, 2004, 109(1): 213-220. |
80 | 孙雨希, 杨宗霖, 于国辉, 等. 槐糖脂生物表面活性剂和石油烃降解菌增效含油污泥生物修复研究[J]. 中国海洋大学学报, 2017, 47(10): 72-80. |
SUN Yuxi, YANG Zonglin, YU Guohui, et al. Sophorolipid biosurfactant and petroleum hydrocarbon degrading bacteria synergistic bioremediation of oily sludge[J]. Periodical of Ocean University of China, 2017, 47(10): 72-80. |
[1] | YANG Ziyu, ZHU Ling, WANG Wenlong, YU Chaofan, SANG Yimin. Research and application progress of smoldering combustion technology for oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3760-3769. |
[2] | YANG Juanjuan, HE Lin, HE Changqing, LI Xingang, SUI Hong. Treatment of oily sludge through multiphase compound conditioning and demulsification separation process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 614-623. |
[3] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[4] | YANG Zhuangzhuang, LIU Yongjun, LIU Xingshe, LIU Zhe, YANG Lu, ZHANG Aining. Coalescence separation of oily sludge and removal effect of organic substances from coal chemical wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 538-545. |
[5] | JIANG Huayi, HU Juan, QI Hongyuan, YOU Yanzhen, WANG Yulong, WU Zhe. Effect of magnetic nanoparticles type and mass concentration on microwave pyrolysis of oily sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3908-3914. |
[6] | JIA Wenlong, SONG Shuoshuo, LI Changjun, WU Xia, YANG Fan, ZHANG Yuanrui. Progress of oily sludge extraction by supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6573-6585. |
[7] | WANG Runmin, ZHANG Xiaodong, XU Chenghua, YU Dandan, YU Ran. Construction and performance evaluation of high efficiency heavy oil degradation consortium [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5653-5660. |
[8] | CHEN Lurui, CAO Lifeng. Effect of temperature on anaerobic hydrogenotrophic methanogenesis and microbial community: a review [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 326-333. |
[9] | TANG Chuiyun, ZHONG Juan, LYU Ying, ZHANG Mingjiang, SUN Juan, LIU Xingyu. Research progress of uranium contaminated soil remediation technology [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4587-4599. |
[10] |
YU Guanlong, PENG Haiyuan, WANG Shitao, WANG Guoliang, CHEN Hong, DU Chunyan, LIU Yuanyuan, SUN Shiquan, YU Li’e, WANG Jianwu.
Performance and mechanism of immobilized biological adsorbent for Cd( |
[11] | ZHANG Nan, WANG Yujing, LIU Shejiang, ZHANG Kai. Progress and prospects on the thermochemical cleaning of oily sludge [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1276-1283. |
[12] | TIAN Kun, YAO Dandan, ZHAO Yuantian, GUO Lili, DONG Yuanhua, LIU Yun. Advances in 1,4-dioxane remediation methods: a review [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5708-5719. |
[13] | Tingting WANG, Zhiqiang ZHAO, Yaobin ZHANG. Enhancement of anaerobic digestion of oily sludge by alkali pretreatment coupled with zero-valent iron [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 534-541. |
[14] | Jun ZHANG, Yue JIA, Bo LIU, Zejun ZHANG, Jing AN, Xianming CAI. Oily sludge reduction in oil and gas gathering process [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 372-378. |
[15] | Dayong TENG, Jian FANG, Xin ZHANG, Junying XU, Houkai TENG, Xiaoxia JIN, Lishan ZHOU. Collaborative treatment of polymer-containing oil sludgeby ultrasonic and depolymerizing agent [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 292-299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |