Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2882-2892.DOI: 10.16085/j.issn.1000-6613.2020-1258
• Resources and environmental engineering • Previous Articles Next Articles
YU Guanlong1,2,3(), PENG Haiyuan1,2, WANG Shitao1,2, WANG Guoliang1,2, CHEN Hong1,3, DU Chunyan1,3, LIU Yuanyuan1, SUN Shiquan1,3(), YU Li’e1,3, WANG Jianwu1,3
Received:
2020-07-06
Online:
2021-05-24
Published:
2021-05-06
Contact:
SUN Shiquan
余关龙1,2,3(), 彭海渊1,2, 王世涛1,2, 汪国梁1,2, 陈宏1,3, 杜春艳1,3, 刘媛媛1, 孙士权1,3(), 禹丽娥1,3, 王建武1,3
通讯作者:
孙士权
作者简介:
余关龙(1978—),男,博士,研究方向为水污染控制及水环境修复。E-mail:基金资助:
CLC Number:
YU Guanlong, PENG Haiyuan, WANG Shitao, WANG Guoliang, CHEN Hong, DU Chunyan, LIU Yuanyuan, SUN Shiquan, YU Li’e, WANG Jianwu. Performance and mechanism of immobilized biological adsorbent for Cd(
余关龙, 彭海渊, 王世涛, 汪国梁, 陈宏, 杜春艳, 刘媛媛, 孙士权, 禹丽娥, 王建武. 固定化生物吸附剂对Cd(Ⅱ)的去除性能及机理[J]. 化工进展, 2021, 40(5): 2882-2892.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1258
测序区域 | 引物名称 | 引物序列 |
---|---|---|
338F 806R | 338F | ACTCCTACGGGAGGCAGCAG |
806R | GGACTACHVGGGTWTCTAAT |
测序区域 | 引物名称 | 引物序列 |
---|---|---|
338F 806R | 338F | ACTCCTACGGGAGGCAGCAG |
806R | GGACTACHVGGGTWTCTAAT |
培养液 | 亚细胞结构 | |||
---|---|---|---|---|
细胞外膜 | 细胞壁 | 细胞内膜 | 细胞质 | |
24.8 | 22.6 | 18.0 | 32.0 | 2.58 |
培养液 | 亚细胞结构 | |||
---|---|---|---|---|
细胞外膜 | 细胞壁 | 细胞内膜 | 细胞质 | |
24.8 | 22.6 | 18.0 | 32.0 | 2.58 |
初始浓度 /mg·L-1 | 准一级动力学 | 准二级动力学 | |||
---|---|---|---|---|---|
K1 | R2 | K2 | R2 | ||
50 | 0.0073 | 0.9380 | 0.0152 | 0.9922 | |
100 | 0.0068 | 0.9223 | 0.0151 | 0.9995 | |
150 | 0.0060 | 0.9451 | 0.0078 | 0.9997 |
初始浓度 /mg·L-1 | 准一级动力学 | 准二级动力学 | |||
---|---|---|---|---|---|
K1 | R2 | K2 | R2 | ||
50 | 0.0073 | 0.9380 | 0.0152 | 0.9922 | |
100 | 0.0068 | 0.9223 | 0.0151 | 0.9995 | |
150 | 0.0060 | 0.9451 | 0.0078 | 0.9997 |
Freundlich | Langmuir | |||||
---|---|---|---|---|---|---|
1/n | kF | R2 | qmax | kL | R2 | |
0.47007 | 5.6624 | 0.9826 | 34.36 | 0.190 | 0.9945 |
Freundlich | Langmuir | |||||
---|---|---|---|---|---|---|
1/n | kF | R2 | qmax | kL | R2 | |
0.47007 | 5.6624 | 0.9826 | 34.36 | 0.190 | 0.9945 |
样品 | 平均孔径/nm | 孔体积/cm3·g-1 | 比表面积/m2·g-1 |
---|---|---|---|
吸附前 | 16.03 | 0.0114 | 2.853 |
吸附后 | 8.36 | 0.012 | 5.785 |
样品 | 平均孔径/nm | 孔体积/cm3·g-1 | 比表面积/m2·g-1 |
---|---|---|---|
吸附前 | 16.03 | 0.0114 | 2.853 |
吸附后 | 8.36 | 0.012 | 5.785 |
1 | 刘江龙, 郭焱, 席艺慧. FeCl3和十六烷基三甲基溴化铵改性赤泥对水中铜离子的吸附性能和机理[J]. 化工进展, 2020, 39(2): 776-789. |
LIU Jianglong, GUO Yan, XI Yihui. Adsorption and mechanism of copper ions in water by red mud modified with FeCl3 and hexadecyl trimethyl ammonium bromide (CTAB)[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 776-789. | |
2 | YIN K, WANG Q N, LV M, et al. Microorganism remediation strategies towards heavy metals[J]. Chemical Engineering Journal, 2019, 360: 1553-1563. |
3 | KHADIVINIA E, SHARAFI H, HADI F, et al. Cadmium biosorption by a glyphosate-degrading bacterium, a novel biosorbent isolated from pesticide-contaminated agricultural soils[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4304-4310. |
4 | 曹健华,刘凌沁,黄亚继,等. 原料种类和热解温度对生物炭吸附Cd2+的影响[J]. 化工进展, 2019, 38(9): 4183-4190. |
CAO Jianhua, LIU Lingqin, HUANG Yaji. et al. Effects of feedstock type and pyrolysis temperature on Cd2+ adsorption by biochar[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4183-4190. | |
5 | 杨培,石先阳. 耐镉功能内生菌的筛选及其固定化处理含镉废水[J]. 生物学杂志, 2019, 36(5): 96-100, 103. |
YANG Pei, SHI Xianyang. Screening of cadmium resistant endophytic bacteria and immobilized for treating cadmium of wastewater[J]. Journal of Biology, 2019, 36(5): 96-100, 103. | |
6 | 张慧,李宁,戴友芝. 重金属污染的生物修复技术[J]. 化工进展, 2004, 23(5): 562-565. |
ZHANG Hui, LI Ning, DAI Youzhi. Research about the bioremediation of heavy metal pollution[J]. Chemical Industry and Engineering Progress, 2004, 23(5): 562-565. | |
7 | PENG W H, LI X M, SONG J X, et al. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides[J]. Chemosphere, 2018, 197: 33-41. |
8 | LI J, LIU Y R, ZHANG L M, et al. Sorption mechanism and distribution of cadmium by different microbial species[J]. Journal of Environmental Management, 2019, 237: 552-559. |
9 | MA L L, CHEN N, FENG C P, et al. Feasibility and mechanism of microbial-phosphorus minerals-alginate immobilized particles in bioreduction of hexavalent chromium and synchronous removal of trivalent chromium[J]. Bioresource Technology, 2019, 294: 122213. |
10 | 王彩冬,黄兵,罗欢. 固定化微生物技术及其应用研究进展[J]. 云南化工, 2007, 34(4): 79-82, 91. |
WANG Caidong, HUANG Bing, LUO Huan. Immobilized microbe technology and its application[J]. Yunnan Chemical Technology, 2007, 34(4): 79-82, 91. | |
11 | LI X, WU Y E, ZHANG C, et al. Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron[J]. Chemical Engineering Journal, 2016, 306: 393-400. |
12 | TODOROVA K, VELKOVA Z, STOYTCHEVA M, et al. Novel composite biosorbent from Bacillus cereus for heavy metals removal from aqueous solutions[J]. Biotechnology & Biotechnological Equipment, 2019, 33(1): 730-738. |
13 | 文晓凤,杜春艳,袁瀚宇,等. 改性磁性纳米颗粒固定内生菌Bacillus nealsonii吸附废水中Cd2+的特性研究[J]. 环境科学学报, 2016, 36(12): 4376-4383. |
WEN Xiaofeng, DU Chunyan, YUAN Hanyu, et al. Adsorption of Cd2+ in wastewater through modified magnetic nanoparticles immobilizing endogenous bacterium Bacillus nealsonii[J]. Acta Scientiae Circumstantiae, 2016, 36(12): 4376-4383. | |
14 | ZHANG M L, WANG H X, HAN X M. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment[J]. Chemosphere, 2016, 154: 215-223. |
15 | WEN X F, DU C Y, ZENG G M, et al. A novel biosorbent prepared by immobilized Bacillus licheniformis for lead removal from wastewater[J]. Chemosphere, 2018, 200: 173-179. |
16 | MATA Y N, BLÁZQUEZ M L, BALLESTER A, et al. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus[J]. Journal of Hazardous Materials, 2009, 163(2/3): 555-562. |
17 | TSEKOVA K, TODOROVA D, DENCHEVA V, et al. Biosorption of copper(Ⅱ) and cadmium(Ⅱ) from aqueous solutions by free and immobilized biomass of Aspergillus niger[J]. Bioresource Technology, 2010, 101(6): 1727-1731. |
18 | KUMAR M, UPRETI R K. Impact of lead stress and adaptation in Escherichia coli[J]. Ecotoxicology and Environmental Safety, 2000, 47(3): 246-252. |
19 | SHENG Y, WANG Y, YANG X, et al. Cadmium tolerant characteristic of a newly isolated Lactococcus lactis subsp. lactis[J]. Environmental Toxicology and Pharmacology, 2016, 48: 183-190. |
20 | SHENG Y, YANG X, LIAN Y Y, et al. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods[J]. Environmental Toxicology and Pharmacology, 2016, 46: 286-291. |
21 | CHEN H G, ZHONG C Y, BERKHOUSE H, et al. Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater[J]. Chemosphere, 2016, 155: 163-169. |
22 | LIU H K, XIE Y L, LI J J, et al. Effect of Serratia sp. K3 combined with organic materials on cadmium migration in soil-Vetiveria Zizanioides L. system and bacterial community in contaminated soil[J]. Chemosphere, 2020, 242: 125164. |
23 | BHATTACHARYA A, NAIK S N, KHARE S K. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium(Ⅱ)[J]. Journal of Environmental Management, 2018, 215: 143-152. |
24 | CHEN Y K, ZHU Q F, DONG X Z, et al. How Serratia marcescens HB-4 absorbs cadmium and its implication on phytoremediation[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109723. |
25 | VULLO D L, CERETTI H M, DANIEL M A, et al. Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E[J]. Bioresource Technology, 2008, 99(13): 5574-5581. |
26 | XU S Z, XING Y H, LIU S, et al. Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China[J]. Chemosphere, 2020, 240: 124893. |
27 | ALKAN H, GUL-GUVEN R, GUVEN K, et al. Biosorption of Cd2+, Cu2+, and Ni2+ ions by a Thermophilic Haloalkalitolerant Bacterial Strain (KG9) immobilized on Amberlite XAD-4[J]. Polish Journal of Environmental Studies, 2015, 24: 1903-1910. |
28 | LIN C, LAI Y. Adsorption and recovery of lead (Ⅱ) from aqueous solutions by immobilized Pseudomonas Aeruginosa PU21 beads[J]. Journal of Hazardous Materials. 2006, 137(1): 99-105. |
29 | HUANG F, DANG Z, GUO C, et al. Biosorption of Cd(Ⅱ) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil[J]. Colloids and Surfaces B: Biointerfaces, 2013, 107: 11-18. |
30 | BAI H J, ZHANG Z M, YANG G E, et al. Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies[J]. Bioresource Technology, 2008, 99(16): 7716-7722. |
31 | PANWICHIAN S, KANTACHOTE D, WITTAYAWEERASAK B, et al. Factors affecting immobilization of heavy metals by purple Nonsulfur bacteria isolated from contaminated shrimp ponds[J]. World Journal of Microbiology and Biotechnology, 2010, 26(12): 2199-2210. |
32 | ZHOU W Z, LIU D S, ZHANG H O, et al. Bioremoval and recovery of Cd(Ⅱ) by Pseudoalteromonas sp. SCSE709-6: comparative study on growing and grown cells[J]. Bioresource Technology, 2014, 165: 145-151. |
33 | 张理元,由耀辉,刘义武,等. 无机沉淀胶溶法制备钛锂离子筛及其吸附性能研究[J]. 材料导报, 2019, 33(24): 4056-4061. |
ZHANG Liyuan, YOU Yaohui, LIU Yiwu, et al. Preparation of titanium-lithium ion sieve by the inorganic precipitation-peptization method and its adsorption performance[J]. Materials Reports, 2019, 33(24): 4056-4061. | |
34 | 冯克,徐丹华,成卓韦,等. 一种负载功能型微生物的营养缓释填料的制备及性能评价[J]. 环境科学, 2019, 40(1): 504-512. |
FENG Ke, XU Danhua, CHENG Zhuowei, et al. Preparation of a nutritional slow-release packing material with function microorganisms and its characteristics evaluation[J]. Environmental Science, 2019, 40(1): 504-512. | |
35 | 李骅,姜灿烂,丁大虎,等. 海藻酸钠-生物炭联合固定化菌株降解2-羟基-1,4-萘醌[J].南京农业大学学报,2016,39(5):800-806. |
LI Hua, TIANG Canlan, DING Dahu, et al. Alginate-biochar joint immobilization strains technique for 2-hydroxy-1,4-naphthoquinone(lawsone) degradation[J]. Journal of Nanjing Agricultural University, 2016, 39(5): 800-806. | |
36 | 王青松,柳永,王新,等. 基于质构量化分析的净水菌胶囊制备及其性能研究[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 712-722. |
WANG Qingsong, LIU Yong, WANG Xin, et al. Preparation and performance study of water purification bacteria-embedded solid capsules based on texture profile analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 712-722. | |
37 | 霍凯利. 固定化重金属耐受菌对废水中铅离子生物吸附的研究[D]. 呼和浩特: 内蒙古工业大学, 2018. |
HUO Kaili. Study on biosorption of Pb2+ from wastewater by immobilized heavy metal tolerant bacteria[D]. Huhhot: Inner Mongolia University of Technology, 2018. |
[1] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[4] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[5] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[6] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[7] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[8] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[9] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[10] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[11] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[12] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[13] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[14] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
[15] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |