Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S2): 372-378.DOI: 10.16085/j.issn.1000-6613.2020-1317
• Resources and environmental engineering • Previous Articles Next Articles
Jun ZHANG1(), Yue JIA1, Bo LIU1, Zejun ZHANG2, Jing AN1, Xianming CAI1
Received:
2020-07-13
Online:
2020-11-17
Published:
2020-11-20
Contact:
Jun ZHANG
张军1(), 贾悦1, 刘博1, 张则俊2, 安静1, 蔡贤明1
通讯作者:
张军
作者简介:
张军(1979—),男,工程师,研究方向为油田安全环保技术。E-mail:基金资助:
CLC Number:
Jun ZHANG, Yue JIA, Bo LIU, Zejun ZHANG, Jing AN, Xianming CAI. Oily sludge reduction in oil and gas gathering process[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 372-378.
张军, 贾悦, 刘博, 张则俊, 安静, 蔡贤明. 油气集输过程中含油污泥减量化[J]. 化工进展, 2020, 39(S2): 372-378.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1317
方法 | 作用机理 | 关键点 | 典型化学药剂 | 优点 | 缺点 | 发展趋势 | 备注 | ||
---|---|---|---|---|---|---|---|---|---|
氧化法 | 剥离有机质与氢键吸附水,大分子亲水基团(物质)氧化为小分子亲油 | 氧化剂 | H2O2/Fenton、ClO2、KMnO4、O3、Na2S2O8、K2S2O8等 | 亲水基团被氧化断链 | 成本高,有安全环境风险 | 选用温和氧化剂并靶向氧化有机物 | 更适宜稠油、聚采油泥,可除硫[ | ||
破乳法 | 物理破乳 | ||||||||
酸 | 压缩双电层,降低油泥中胶粒的ζ电位,破坏乳液结构 | pH(常见为4) | H2SO4、HCl或其他固体酸 | 快速削弱或破坏乳液 | 易腐蚀设备,有安全风险 | 与其他技术耦合应用 | 更适宜于聚采油泥 | ||
碱或盐 | 改变其表面极性和润湿状态,降低界面张力,剥离吸附油相 | 热碱液 | NaOH、KOH、Na4SiO4、Na2CO3、Na3PO4等 | 脱出的水较澄清 | 分离率偏低,投药量大 | 与其他破乳剂结合应用 | 减量化不明显 | ||
表面活性剂 | 常规 | 快速、有效地削弱或破坏油泥中的油-水界面膜,与乳化剂生成络合物或中和带电的油滴实现油泥脱稳 | 有机物的成分和电位 | CTAB、DTAB、LAS、OP-10等 | 油回收率高,破乳速度快、效率高。 | 破乳剂及工艺广谱性差 | 优选低成本、环保型表面活性剂、助剂及油,研究循环使用 | 多用于罐底油泥,破乳-离心工艺 | |
生物 | 鼠李糖脂、棕榈基酯等 | ||||||||
微乳 | 界面张力<10-4 mN/m,乳化作用,破坏油水界面膜 | 界面张力 | 煤油(甲苯)+OP-10(NP-10、CTAB)+正丁醇 | 快速、高效 | 用量为油泥质量的数倍 | ||||
电化学破乳 | 在电渗析、电迁移和电泳等的联合作用下,低强度直流电使油泥中的水分、烃类和固体颗粒分别富集在两侧 | 电阻、pH、电势、电极间距等 | 增强材料:FeCl3、鼠李糖脂、明矾等 | 回收轻质烃类效果好 | 受多因素影响,电阻、pH等,且成本较高 | 油泥储存池用作电破乳反应池 | 目前工业化应用尚不成熟 | ||
絮凝法 | 无机 | 压缩双电层及电中和作用,降低胶粒的ζ电位,使乳液外膜变薄,促进微粒碰撞吸附脱稳 | 絮凝剂/混凝剂 | 铝盐、铁盐系列和铁铝复合聚合物:AlCl3、Al2(SO4)3、FeCl3及CaO等 | 工艺简单、投资和运行费用较低 | 胶质和沥青质高时,需要提高温度 | 据Cl-和pH选择复配的混凝剂/助凝剂 | 无机和有机联合使用效果好 | |
有机 | 在微粒间架桥、网捕等,促进液滴集聚 | 分子量 | PAM、CPAM | 投药量大 |
方法 | 作用机理 | 关键点 | 典型化学药剂 | 优点 | 缺点 | 发展趋势 | 备注 | ||
---|---|---|---|---|---|---|---|---|---|
氧化法 | 剥离有机质与氢键吸附水,大分子亲水基团(物质)氧化为小分子亲油 | 氧化剂 | H2O2/Fenton、ClO2、KMnO4、O3、Na2S2O8、K2S2O8等 | 亲水基团被氧化断链 | 成本高,有安全环境风险 | 选用温和氧化剂并靶向氧化有机物 | 更适宜稠油、聚采油泥,可除硫[ | ||
破乳法 | 物理破乳 | ||||||||
酸 | 压缩双电层,降低油泥中胶粒的ζ电位,破坏乳液结构 | pH(常见为4) | H2SO4、HCl或其他固体酸 | 快速削弱或破坏乳液 | 易腐蚀设备,有安全风险 | 与其他技术耦合应用 | 更适宜于聚采油泥 | ||
碱或盐 | 改变其表面极性和润湿状态,降低界面张力,剥离吸附油相 | 热碱液 | NaOH、KOH、Na4SiO4、Na2CO3、Na3PO4等 | 脱出的水较澄清 | 分离率偏低,投药量大 | 与其他破乳剂结合应用 | 减量化不明显 | ||
表面活性剂 | 常规 | 快速、有效地削弱或破坏油泥中的油-水界面膜,与乳化剂生成络合物或中和带电的油滴实现油泥脱稳 | 有机物的成分和电位 | CTAB、DTAB、LAS、OP-10等 | 油回收率高,破乳速度快、效率高。 | 破乳剂及工艺广谱性差 | 优选低成本、环保型表面活性剂、助剂及油,研究循环使用 | 多用于罐底油泥,破乳-离心工艺 | |
生物 | 鼠李糖脂、棕榈基酯等 | ||||||||
微乳 | 界面张力<10-4 mN/m,乳化作用,破坏油水界面膜 | 界面张力 | 煤油(甲苯)+OP-10(NP-10、CTAB)+正丁醇 | 快速、高效 | 用量为油泥质量的数倍 | ||||
电化学破乳 | 在电渗析、电迁移和电泳等的联合作用下,低强度直流电使油泥中的水分、烃类和固体颗粒分别富集在两侧 | 电阻、pH、电势、电极间距等 | 增强材料:FeCl3、鼠李糖脂、明矾等 | 回收轻质烃类效果好 | 受多因素影响,电阻、pH等,且成本较高 | 油泥储存池用作电破乳反应池 | 目前工业化应用尚不成熟 | ||
絮凝法 | 无机 | 压缩双电层及电中和作用,降低胶粒的ζ电位,使乳液外膜变薄,促进微粒碰撞吸附脱稳 | 絮凝剂/混凝剂 | 铝盐、铁盐系列和铁铝复合聚合物:AlCl3、Al2(SO4)3、FeCl3及CaO等 | 工艺简单、投资和运行费用较低 | 胶质和沥青质高时,需要提高温度 | 据Cl-和pH选择复配的混凝剂/助凝剂 | 无机和有机联合使用效果好 | |
有机 | 在微粒间架桥、网捕等,促进液滴集聚 | 分子量 | PAM、CPAM | 投药量大 |
分类 | 作用机理 | 优点 | 缺点 | 备注 |
---|---|---|---|---|
直接干化 | ||||
压滤/离心半干化 | 离心密度、粒径差等在离心力或压力条件下物理分离 | 固液分离效果好,能耗相对较低、适用性强 | 需要对含油污泥预处理,单独使用效果差 | 工业化使用广,需要进一步提高机械装置性能 |
微波干化 | 增加介质分子的热运动,产生油水分子强烈的摩擦发热并破坏絮体 | 占地面积小,效果好 | 能耗高,存在微波对人体伤害的风险 | 频率300MHz~300GHz、 波长0.001~1m的微波,有应用潜力 |
电渗透干化 | 含油污泥中水和颗粒在电场中呈正负电荷,水向阴极移动 | 脱水效率高,能耗相对较低 | 阳极易腐蚀,水减少效果降低 | 伴有扩散、电迁移和电泳等现象,有应用潜力 |
间接干化 | ||||
桨叶式干化 | 热水、蒸汽或导热油分别进入壳体夹套和桨叶轴内腔,同时加热油泥 | 减量化效果好,根据需要可将含水率控制到15%以下 | 能耗高,单套装置处理能力低 | 干化速率10~35kg/(m2·h),适合含油污泥产生量小且有余热可利用的油田 |
圆盘/薄层/带式干化 | 热水、蒸汽、高温烟气、电磁或导热油等高温介质对盛装油泥的腔体加热,蒸发使油水固分离 | |||
双螺旋干化 | 黏度高油泥不易黏附、结焦 | 适用高胶质、沥青质、黏土矿物油泥 | ||
油炸干化 | 加热废油至100~180℃以上,将含油污泥直接放入“油炸”,水以蒸汽方式分离 | 脱水效率高、传热效率快、设备简单 | 处理能力小,反应过程激烈,存在安全隐患 | 未见相关反应装置,尚未工业化应用,不适合集输过程中含油污泥减量化工艺 |
分类 | 作用机理 | 优点 | 缺点 | 备注 |
---|---|---|---|---|
直接干化 | ||||
压滤/离心半干化 | 离心密度、粒径差等在离心力或压力条件下物理分离 | 固液分离效果好,能耗相对较低、适用性强 | 需要对含油污泥预处理,单独使用效果差 | 工业化使用广,需要进一步提高机械装置性能 |
微波干化 | 增加介质分子的热运动,产生油水分子强烈的摩擦发热并破坏絮体 | 占地面积小,效果好 | 能耗高,存在微波对人体伤害的风险 | 频率300MHz~300GHz、 波长0.001~1m的微波,有应用潜力 |
电渗透干化 | 含油污泥中水和颗粒在电场中呈正负电荷,水向阴极移动 | 脱水效率高,能耗相对较低 | 阳极易腐蚀,水减少效果降低 | 伴有扩散、电迁移和电泳等现象,有应用潜力 |
间接干化 | ||||
桨叶式干化 | 热水、蒸汽或导热油分别进入壳体夹套和桨叶轴内腔,同时加热油泥 | 减量化效果好,根据需要可将含水率控制到15%以下 | 能耗高,单套装置处理能力低 | 干化速率10~35kg/(m2·h),适合含油污泥产生量小且有余热可利用的油田 |
圆盘/薄层/带式干化 | 热水、蒸汽、高温烟气、电磁或导热油等高温介质对盛装油泥的腔体加热,蒸发使油水固分离 | |||
双螺旋干化 | 黏度高油泥不易黏附、结焦 | 适用高胶质、沥青质、黏土矿物油泥 | ||
油炸干化 | 加热废油至100~180℃以上,将含油污泥直接放入“油炸”,水以蒸汽方式分离 | 脱水效率高、传热效率快、设备简单 | 处理能力小,反应过程激烈,存在安全隐患 | 未见相关反应装置,尚未工业化应用,不适合集输过程中含油污泥减量化工艺 |
油田/联合站 | 工艺+装置 | 化学药剂及加量 | 设计 能力 /m3.h-1 | 年份 | 处置前 含水率 /% | 处置后 含水率 /% | 其他 |
---|---|---|---|---|---|---|---|
大庆葡萄花油[ | 污泥浓缩罐+两级旋流+离心机 | 阳离子聚丙烯酰胺,17~40mg·L-1 | 6 | 2009 | 93.7~97.2 | 67.9~73.9 | 旋流受限于离心原理[ |
污泥浓缩罐+叠螺机 | 阳离子聚丙烯酰胺,20~24mg·L-1 | 10 | 2011—2013 | 95.4~98.7 | 58~67.3 | 总功率8.5kW | |
辽河曙光油田[ | 絮凝-浓缩-压滤 | 0.5%反絮凝剂 | — | 2018 | 98.25 | 75 | 浮渣处理成本约9.5CNY/t,体积减量6~8倍 |
华北车城油田[ | 絮凝-浓缩-叠螺机 | 15~20mg·L-1(1g·L-1)阳离子PAM | — | 2016 | 98.30 | 80.75 | 体积缩小至原体积的1/11 |
油田/联合站 | 工艺+装置 | 化学药剂及加量 | 设计 能力 /m3.h-1 | 年份 | 处置前 含水率 /% | 处置后 含水率 /% | 其他 |
---|---|---|---|---|---|---|---|
大庆葡萄花油[ | 污泥浓缩罐+两级旋流+离心机 | 阳离子聚丙烯酰胺,17~40mg·L-1 | 6 | 2009 | 93.7~97.2 | 67.9~73.9 | 旋流受限于离心原理[ |
污泥浓缩罐+叠螺机 | 阳离子聚丙烯酰胺,20~24mg·L-1 | 10 | 2011—2013 | 95.4~98.7 | 58~67.3 | 总功率8.5kW | |
辽河曙光油田[ | 絮凝-浓缩-压滤 | 0.5%反絮凝剂 | — | 2018 | 98.25 | 75 | 浮渣处理成本约9.5CNY/t,体积减量6~8倍 |
华北车城油田[ | 絮凝-浓缩-叠螺机 | 15~20mg·L-1(1g·L-1)阳离子PAM | — | 2016 | 98.30 | 80.75 | 体积缩小至原体积的1/11 |
装置 | 工作原理 | 优点 | 不足 | 其它 |
---|---|---|---|---|
离心机 | 利用固液密度差在离心力作用下分离 | 操作简单,占地小,处理量相对较大 | 能耗大,高固相时易堵塞,噪声大 | 在稠油生产过程中固液分离效果差 |
压滤机 | 利用固液粒径差在一定压力时通过滤布网眼构造分离 | 残渣含液率相对低,效果好 | 间歇运行,处理能力小,冲水量大,滤布更换频繁,综合成本高 | 不适用高黏度、高黏土矿化物工况 |
叠螺机 | 通过固定和移动叠片间挤压,滤液从滤网流出 | 占地小,能耗小,故障率低 | 单套装置处理能力低,残渣经常含水率>80% | 适用集输过程中 |
装置 | 工作原理 | 优点 | 不足 | 其它 |
---|---|---|---|---|
离心机 | 利用固液密度差在离心力作用下分离 | 操作简单,占地小,处理量相对较大 | 能耗大,高固相时易堵塞,噪声大 | 在稠油生产过程中固液分离效果差 |
压滤机 | 利用固液粒径差在一定压力时通过滤布网眼构造分离 | 残渣含液率相对低,效果好 | 间歇运行,处理能力小,冲水量大,滤布更换频繁,综合成本高 | 不适用高黏度、高黏土矿化物工况 |
叠螺机 | 通过固定和移动叠片间挤压,滤液从滤网流出 | 占地小,能耗小,故障率低 | 单套装置处理能力低,残渣经常含水率>80% | 适用集输过程中 |
1 | 马尧, 严忠, 杨媛, 等. 油田站场含油污泥产生量的规律性实验研究[J]. 油气田地面工程, 2020, 39(1): 31-35. |
MA Yao, YAN Zhong, YANG Yuan, et al. Experimental study on law of oily sludge production in oilfield stations[J]. Oil-Gasfield Surface Engineering, 2020, 39(1): 31-35. | |
2 | 王秀军, 张健, 翟磊, 等. 聚驱油田采出液处理生成油泥的组成及形成机理[J]. 化工环保, 2016, 36(4): 364-369. |
WANG Xiujun, ZHANG Jian, CUI Lei, et al. Components and formation mechanism of oily sludge generated in treatment of polymer-flooding produced water[J]. Environmental Protection of Chemical Industry, 2016, 36(4): 364-369. | |
3 | SIVAGAMI Krishnasamy, ANAND Deeksha, DIVYAPRIYA Govindaraj, et al. Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process[J]. Ultrasonics Sonochemisriy, 2019(51): 340-349. |
4 | 青鹏, 朱国, 何海, 等.元坝气田含硫污水脱硫处理及污泥减量化研究[C]//北京: 《环境工程》2019年全国学术年会论文集(下册), 2019: 197-200. |
QING Peng, ZHU Guo, HE Hai, et al. Desulfurization treatment of sulfur-bearing wastewater and sludge reduction in Yuanba gas field [C]//Beijing:"Environmental Engineering" 2019 National Academic Annual Conference Proceedings (Volume Ⅱ), 2019: 197-200. | |
5 | ZHEN Guangyin, TAN Yujie, WU Taipu, et al. Strengthened dewaterability of coke-oven plant oily sludge by altering extracellular organics using Fe(Ⅱ)-activated persulfate oxidation[J]. Science of the Total Environement, 2019, 688: 1155-1161. |
6 | SUN Zhiyi, XIA Fujun, LOU Ziyang. Innovative process for total petroleum hydrocarbons reduction on oil refinery sludge through micro bubble ozonation[J/OL]. Journal of Cleaner Production, 2020. doi: https://doi.org/10.1016/j.jclepro.2020.120337. |
7 | GUO Shuhai, LI Gang, QU Jing, et al. Improvement of acidification on dewaterability of oily sludge from flotation[J]. Chemical Engineering Journal, 2011, 168(2): 746-751. |
8 | CHEN Gang, CHENG Chao, ZHANG Jie, et al. Synergistic effect of surfactant and alkali on the treatment of oil sludge[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106420. |
9 | 谢志勤, 尹必跃, 张淮浩. 碱酸预处理高含渣污油的破乳机制研究[J]. 油田化学, 2017, 34(3): 538-542. |
XIE Zhiqi, YIN Biyue, ZHANG Huaihao. Demulsification mechanism of sodium hydroxide and sulfuric acid pretreatment for dirty oil with high colid content[J]. Oilfield Chemistry, 2017, 34(3): 538-542. | |
10 | LONG Xuwei, ZHANG Guoliang, HAN Li, et al. Dewatering of floated oily sludge by treatment with rhamnolipid[J]. Water Research,2013, 47(13): 4303-4311. |
11 | PUASA S W, ISMAIL K N, MUSMAN M Z A, et al. Enhanced oily sludge dewatering using plant-based surfactant technology[J]. Materials Today-proceedings, 2019, 19(SI4): 1159-1165. |
12 | 杨洁, 刘天璐, 毛飞燕, 等.微乳液法脱除含油污泥中的乳化水[J]. 浙江大学学报(工学版), 2017, 51(2): 370-377. |
YANG Jie, LIU Tianlu, MAO Feiyan, et al. Removal of emulsified water in petroleum sludge using micro-emulsion method[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(2): 370-377. | |
13 | TALEGHANI S T, JAHROMI A F, ELEKTOROWICZ M. Electro-demulsification of water-in-oil suspensions enhanced with implementing various additives[J]. Chemosphere, 2019, 233: 157-163. |
14 | 陈家庆, 黄松涛, 沈玮玮, 等.W/O型原油乳化液高频电场破乳特性实验[J]. 油气储运, 2017, 36(6): 694-701. |
CHEN Jiaqing,HUANG Songtao,SHEN Weiwei,et al. Experiment on demulsification characteristics of water-in-oil emulsions in high-frequency electric field[J]. Oil & Gas Storage and Transportation, 2017, 36(6): 694-701. | |
15 | CHEN Ying, TIAN Gongwei, ZHAI Boyin, et al. Cationic starch-grafted-cationic polyacrylamide based graphene oxide ternary composite flocculant for the enhanced flocculation of oil sludge suspension[J]. Composites Part B: Engineering, 2019, 177: 107416. |
16 | 刘宇程, 吴东海, 田丰, 等.物化破乳-脱稳离心处理油罐底泥[J]. 环境工程学报, 2016, 10(12): 7188-7194. |
LIU Yucheng, WU Donghai, TIAN Feng, et al. Oil tank bottom sludge treatment based on physicochemical demulsification-destabilization centrifugal[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7188-7194. | |
17 | 黄力. 气田含油污泥氧化处理工艺技术及机理研究[D]. 西安: 西安石油大学, 2019. |
HUANG Li. Study on technology and mechanism of oily sludge oxidation treatment in gas fields[D]. Xi’an: Xi’an Shiyou University, 2019. | |
18 | SU Biyun, HUANG Li, LI Shanjian, et al. Chemical-microwave-ultrasonic compound conditioning treatment of highly-emulsified oily sludge in gas fields[J]. Natural Gas Industry B, 2019, 6(4): 412-418. |
19 | SRIKANTH Sandipam, KUMAR Manoj, SINGH Dheer, et al. Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation[J]. Bioresource Technology, 2016, 221: 70-77. |
20 | ZHANG Yunshu, ZHAO Qingliang, JIANG Junqiu, et al. Acceleration of organic removal and electricity generation from dewatered oily sludge in a bioelectrochemical system by rhamnolipid addition[J]. Bioresource Technology, 2017, 243: 820-827. |
21 | 刘丽娟. 葡萄花油田采出水处理站污泥减量化装置应用效果及评价[J]. 石油石化节能, 2016, 6(8): 26-28. |
LIU Lijuan. Effects and evaluation on sludge reduction unit in produced water treating station of Putaohua oilfield[J]. Foreign Oilfield Engineering, 2016, 6(8): 26-28. | |
22 | 韩帅. 污水罐负压排泥及其产生的油泥处理装置研究与应用[J]. 油气田地面工程, 2018, 37(9): 95-97. |
HAN Shuai. Research and application of the treatment device for the negative pressure dis-charged sludge and oil sludge produced by sewage tanks[J]. Oil-Gasfield Surface Engineering, 2018, 37(9): 95-97. | |
23 | 张建安. 曙光油田含油浮渣减量化处理技术试验研究[J]. 石化技术, 2018, 25(7): 121-122. |
ZHANG Jian’an. Experimental research on oil dross reduction technology in Shuguang oilfield[J]. Petrochemical Industry Technology, 2018, 25(7): 121-122. | |
24 | 郭栋, 马永忠, 李小永, 等.车城油田采出水生物处理中剩余污泥减量化技术试验[J]. 石油石化节能, 2016, 6(11): 29-30. |
GUO Dong, MA Yongzhong, LI Xiaoyong, et al. Application of excess sludge reducing technology in biological treatment of Checheng oilfield produced water[J]. Foreign Oilfield Engineering, 2016, 6(11): 29-30. | |
25 | 毛飞燕, 马以超, 李杰, 等.含油污泥离心脱水关键影响因素分析[J]. 环境污染与防治, 2018, 40(5): 539-543. |
MAO Feiyan, MA Yichao, LI Jie, et al. Study on the key influencing factors of centrifugal dehydration of oily sludge[J]. Environmental Pollution & Control, 2018, 40(5): 539-543. | |
26 | 李哲. 污水站离心式污泥减量化处理工艺方案研究[D]. 大庆: 东北石油大学, 2017. |
LI Zhe. Research on process program of centrifugal sludge reduction treatment in sewage station[D]. Daqi: Northeast Petroleum University, 2017. | |
27 | 王岩松, 张子臣, 陈卫江.海上平台含油污泥减量化处理工艺设计及应用[J]. 油气田地面工程, 2019, 38(7): 110-113. |
WANG Yansong,ZHANG Zichen,CHEN Weijiang. Design and application of oily sludge reduction treatment technology for offshore platforms[J]. Oil-Gasfield Surface Engineering, 2019, 38(7): 110-113. | |
28 | Elham MIR, RASHIDI Hamed, Peyvand VALEH-E-SHEYDA. Towards a CFD-based analysis of a full-scale sludge tank to enhance dewatering capacity of the downstream filter press[J]. Process Safety and Environmental Protection, 2018, 120: 166-177. |
29 | ANONYMOUS. Dewatering device for disposal issues[J]. Filtration & Separation, 2019, 56(2): 28-30. |
30 | SRIKANTH Sandipam, KUMAR Manoj, PURI Singh. Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry[J]. Bioresource Technology, 2018, 265: 506-518. |
[1] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[2] | XIANG Shuo, LU Peng, SHI Weinian, YANG Xin, HE Yan, ZHU Liye, KONG Xiangwei. Controllable and large-scale preparation of two-dimensional WS2 nanosheet and its tribological properties as lubricant additives in lithium grease [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4783-4790. |
[3] | YANG Ziyu, ZHU Ling, WANG Wenlong, YU Chaofan, SANG Yimin. Research and application progress of smoldering combustion technology for oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3760-3769. |
[4] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[5] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[6] | YANG Juanjuan, HE Lin, HE Changqing, LI Xingang, SUI Hong. Treatment of oily sludge through multiphase compound conditioning and demulsification separation process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 614-623. |
[7] | DENG Quanlong, DING Houcheng, XU Yuandi, JIANG Zhong’an, YANG Lan, SUN Xuefei. Synergistic dust removal performance of surfactant droplets combined with metal mesh grid [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 546-552. |
[8] | YANG Zhuangzhuang, LIU Yongjun, LIU Xingshe, LIU Zhe, YANG Lu, ZHANG Aining. Coalescence separation of oily sludge and removal effect of organic substances from coal chemical wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 538-545. |
[9] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[10] | ZHANG Qingqing, BI Haipu, SHU Zhongjun, OU Hongxiang, WANG Shangbin, WANG Junqi, PAN Yi. Research progress on control behaviors and substitutes of PFOS in foam extinguishing agents [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 340-350. |
[11] | CHANG Wei, SHI Qiulan, ZHAO Zhengyang, WANG Ruiting, WANG Zhifu, ZHAO Jianbo. Preparation and application of polyacrylamide porous hydrogel by high internal phase emulsion polymerization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3832-3839. |
[12] | JIANG Huayi, HU Juan, QI Hongyuan, YOU Yanzhen, WANG Yulong, WU Zhe. Effect of magnetic nanoparticles type and mass concentration on microwave pyrolysis of oily sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3908-3914. |
[13] | ZHANG Xincheng, HE Lin, SUI Hong, LI Xingang. Demulsification process and enhancement by viscosity reduction for water-in-heavy oil emulsions [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3534-3544. |
[14] | HU Yaoyao, WEI Ming, LI Boshen, DONG Yuelin, DONG Qunfeng, LIU Chuanqi. Preparation and properties of silicon and sulfhydryl compound modified UV-curable WPUA coating [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3186-3193. |
[15] | ZHAO Liang, WANG Yan, WANG Gang, FANG Xiangchen, DUAN Xiaoguang, WANG Shaobin. Application of paraffin@gelatinized flour phase change microcapsule in building materials [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2566-2573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |