Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 3186-3193.DOI: 10.16085/j.issn.1000-6613.2021-1413
• Materials science and technology • Previous Articles Next Articles
HU Yaoyao1(), WEI Ming1(
), LI Boshen1, DONG Yuelin2(
), DONG Qunfeng2, LIU Chuanqi2
Received:
2021-07-05
Revised:
2021-08-27
Online:
2022-06-21
Published:
2022-06-10
Contact:
WEI Ming,DONG Yuelin
胡瑶瑶1(), 魏铭1(
), 李博申1, 董月林2(
), 董群峰2, 刘传奇2
通讯作者:
魏铭,董月林
作者简介:
胡瑶瑶(1998—),女,硕士研究生,研究方向为紫外光固化涂料。E-mail:CLC Number:
HU Yaoyao, WEI Ming, LI Boshen, DONG Yuelin, DONG Qunfeng, LIU Chuanqi. Preparation and properties of silicon and sulfhydryl compound modified UV-curable WPUA coating[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3186-3193.
胡瑶瑶, 魏铭, 李博申, 董月林, 董群峰, 刘传奇. 硅/巯基复合改性光固化WPUA涂料制备及其性能[J]. 化工进展, 2022, 41(6): 3186-3193.
样品 | IPDI /mol | PEG400 /mol | BDO /mol | DMPA /mol | 2-HEA /mol | w(HS) /% | w(PETMP) /% |
---|---|---|---|---|---|---|---|
WPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 0 | 0 |
1%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 1 | 0 |
2%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 2 | 0 |
3%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 0 |
4%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 4 | 0 |
5%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 5 | 0 |
2.5%-PHSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 2.5 |
5%-PHSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 5 |
7.5%-PHSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 7.5 |
10%PHSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 10 |
样品 | IPDI /mol | PEG400 /mol | BDO /mol | DMPA /mol | 2-HEA /mol | w(HS) /% | w(PETMP) /% |
---|---|---|---|---|---|---|---|
WPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 0 | 0 |
1%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 1 | 0 |
2%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 2 | 0 |
3%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 0 |
4%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 4 | 0 |
5%-HSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 5 | 0 |
2.5%-PHSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 2.5 |
5%-PHSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 5 |
7.5%-PHSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 7.5 |
10%PHSWPUA | 0.1 | 0.041 | 0.032 | 0.01 | 0.045 | 3 | 10 |
样品 | 附着力/级 | 硬度/级 | 柔韧性/mm | 耐冲击/cm |
---|---|---|---|---|
WPUA | 3 | HB | 0.5 | 50 |
1%-HSWPUA | 3 | HB | 0.5 | 50 |
2%-HSWPUA | 3 | H | 0.5 | 50 |
3%-HSWPUA | 2 | 2H | 0.5 | 50 |
4%-HSWPUA | 3 | 2H | 0.5 | 50 |
5%-HSWPUA | 3 | 2H | 0.5 | 50 |
2.5%-PHSWPUA | 2 | 2H | 0.5 | 50 |
5%-PHSWPUA | 2 | 3H | 0.5 | 50 |
7.5%-PHSWPUA | 1 | 3H | 0.5 | 50 |
10%-PHSWPUA | 2 | 3H | 0.5 | 50 |
样品 | 附着力/级 | 硬度/级 | 柔韧性/mm | 耐冲击/cm |
---|---|---|---|---|
WPUA | 3 | HB | 0.5 | 50 |
1%-HSWPUA | 3 | HB | 0.5 | 50 |
2%-HSWPUA | 3 | H | 0.5 | 50 |
3%-HSWPUA | 2 | 2H | 0.5 | 50 |
4%-HSWPUA | 3 | 2H | 0.5 | 50 |
5%-HSWPUA | 3 | 2H | 0.5 | 50 |
2.5%-PHSWPUA | 2 | 2H | 0.5 | 50 |
5%-PHSWPUA | 2 | 3H | 0.5 | 50 |
7.5%-PHSWPUA | 1 | 3H | 0.5 | 50 |
10%-PHSWPUA | 2 | 3H | 0.5 | 50 |
样品 | 离心稳定性 /级 | 冻融 稳定性 | 吸水率 /% | 耐水性(168h) | 乳液外观 |
---|---|---|---|---|---|
WPUA | 1 | 通过 | 18.78 | 严重锈蚀 | 透明泛蓝 |
1%-HSWPUA | 1 | 通过 | 16.33 | 严重锈蚀 | 透明泛蓝 |
2%-HSWPUA | 1 | 通过 | 12.64 | 严重锈蚀 | 透明泛蓝 |
3%-HSWPUA | 1 | 通过 | 8.56 | 中度锈蚀 | 透明泛蓝 |
4%-HSWPUA | 1 | 通过 | 8.93 | 中度锈蚀 | 乳白泛蓝 |
5%-HSWPUA | 1 | 通过 | 8.47 | 中度锈蚀 | 透明泛蓝 |
2.5%-PHSWPUA | 1 | 通过 | 8.13 | 轻度锈蚀 | 透明泛蓝 |
5%-PHSWPUA | 1 | 通过 | 7.88 | 轻度锈蚀 | 透明泛蓝 |
7.5%-PHSWPUA | 1 | 通过 | 6.94 | 轻度发白 | 透明泛蓝 |
10%-PHSWPUA | 1 | 通过 | 8.21 | 中度锈蚀 | 乳白泛蓝 |
样品 | 离心稳定性 /级 | 冻融 稳定性 | 吸水率 /% | 耐水性(168h) | 乳液外观 |
---|---|---|---|---|---|
WPUA | 1 | 通过 | 18.78 | 严重锈蚀 | 透明泛蓝 |
1%-HSWPUA | 1 | 通过 | 16.33 | 严重锈蚀 | 透明泛蓝 |
2%-HSWPUA | 1 | 通过 | 12.64 | 严重锈蚀 | 透明泛蓝 |
3%-HSWPUA | 1 | 通过 | 8.56 | 中度锈蚀 | 透明泛蓝 |
4%-HSWPUA | 1 | 通过 | 8.93 | 中度锈蚀 | 乳白泛蓝 |
5%-HSWPUA | 1 | 通过 | 8.47 | 中度锈蚀 | 透明泛蓝 |
2.5%-PHSWPUA | 1 | 通过 | 8.13 | 轻度锈蚀 | 透明泛蓝 |
5%-PHSWPUA | 1 | 通过 | 7.88 | 轻度锈蚀 | 透明泛蓝 |
7.5%-PHSWPUA | 1 | 通过 | 6.94 | 轻度发白 | 透明泛蓝 |
10%-PHSWPUA | 1 | 通过 | 8.21 | 中度锈蚀 | 乳白泛蓝 |
样品 | T10%/℃ | T50%/℃ | Tmax/℃ |
---|---|---|---|
WPUA | 225.4 | 327.3 | 345.5 |
3%-HSWPUA | 260.3 | 342.2 | 347.2 |
7.5%-PHSWPUA | 280.5 | 352.2 | 353.8 |
样品 | T10%/℃ | T50%/℃ | Tmax/℃ |
---|---|---|---|
WPUA | 225.4 | 327.3 | 345.5 |
3%-HSWPUA | 260.3 | 342.2 | 347.2 |
7.5%-PHSWPUA | 280.5 | 352.2 | 353.8 |
样品 | 阻抗 /Ω·cm2 | Ecoor/V | Icoor/A·cm-2 | 年腐蚀速率 /mm |
---|---|---|---|---|
WPUA | 1.86×106 | -1.069 | 2.12×10-8 | 1.0079 |
3%-HSWPUA | 2.66×107 | -0.6453 | 6.72×10-10 | 0.0228 |
5%-HSWPUA | 3.6×106 | -0.8011 | 3.43×10-9 | 0.0773 |
7.5%-PHSWPUA | 6.45×107 | -0.4215 | 8.11×10-10 | 0.0242 |
样品 | 阻抗 /Ω·cm2 | Ecoor/V | Icoor/A·cm-2 | 年腐蚀速率 /mm |
---|---|---|---|---|
WPUA | 1.86×106 | -1.069 | 2.12×10-8 | 1.0079 |
3%-HSWPUA | 2.66×107 | -0.6453 | 6.72×10-10 | 0.0228 |
5%-HSWPUA | 3.6×106 | -0.8011 | 3.43×10-9 | 0.0773 |
7.5%-PHSWPUA | 6.45×107 | -0.4215 | 8.11×10-10 | 0.0242 |
1 | WANG S P, WU Y G, DAI J Y, et al. Making organic coatings greener: renewable resource, solvent-free synthesis, UV curing and repairability[J]. European Polymer Journal, 2020, 123: 109439. |
2 | DENG L, TANG L Y, QU J Q. Synthesis and photopolymerization of novel UV-curable macro-photoinitiators[J]. Progress in Organic Coatings, 2020, 141: 105546. |
3 | LI X W, LIU Z, HONG P, et al. Synthesis of organic and inorganic hybrid nanoparticles as multifunctional photoinitiator and its application in UV-curable epoxy acrylate-based coating systems[J]. Progress in Organic Coatings, 2020, 141: 105565. |
4 | KOU Y, WANG J Y, LYU M, et al. Preparation and evaluation of epoxy methacrylate UV-curable coatings containing phthalazinone[J]. Polymer International, 2010, 59(1): 107-111. |
5 | 郭浩, 甄焕珍, 李翠红, 等. 紫外光固化水性涂料研究进展[J]. 信息记录材料, 2021, 22(4): 1-3. |
GUO Hao, ZHEN Huanzhen, LI Cuihong, et al. Research progress of UV curable waterborne coatings[J]. Information Recording Materials, 2021, 22(4): 1-3. | |
6 | 姜健, 王小东, 石雅琳. 环氧改性聚氨酯丙烯酸酯树脂的合成及性能研究[C]//中国聚氨酯工业协会第19次年会, 上海, 2018: 512-514. |
JIANG Jian, WANG Xiaodong, SHI Yalin. Synthesis and properties of epoxy modified polyurethane acrylate resin[C]// Proceedings of the 19th Annual conference of China Polyurethane Industry Association, Shanghai, 2018: 512-514. | |
7 | QIU F X, XU H P, WANG Y Y, et al. Preparation, characterization and properties of UV-curable waterborne polyurethane acrylate/SiO2 coating[J]. Journal of Coatings Technology and Research, 2012, 9(5): 503-514. |
8 | WEI D D, HUANG X M, ZENG J J, et al. Facile synthesis of a castor oil-based hyperbranched acrylate oligomer and its application in UV-curable coatings[J]. Journal of Applied Polymer Science, 2020, 137(36): 49054. |
9 | LEE Y J, LA Y J, JEON O S, et al. Effects of boron nitride nanotube content on waterborne polyurethane-acrylate composite coating materials[J]. RSC Advances, 2021, 11(21): 12748-12756. |
10 | KUKANJA D, GOLOB J, ZUPANČIČ-VALANT A, et al. The structure and properties of acrylic-polyurethane hybrid emulsions and comparison with physical blends[J]. Journal of Applied Polymer Science, 2000, 78(1): 67-80. |
11 | 张求学. 超支化水性聚氨酯/丙烯酸酯复合乳液的制备和性能研究[D]. 长春: 长春工业大学, 2019. |
ZHANG Qiuxue. Preparation and properties of hyperbranched waterborne polyurethane/acrylate hybrid emulsions[D]. Changchun: Changchun University of Technology, 2019. | |
12 | BHAGAT S D, CHATTERJEE J, CHEN B H, et al. High refractive index polymers based on thiol-ene cross-linking using polarizable inorganic/organic monomers[J]. Macromolecules, 2012, 45(3): 1174-1181. |
13 | TIAN Y Z, WANG Q, WANG K, et al. From biomass resources to functional materials: a fluorescent thermosetting material based on resveratrol via thiol-ene click chemistry[J]. European Polymer Journal, 2020, 123: 109416. |
14 | DAI J Y, MA S Q, ZHU L X, et al. UV-thermal dual cured anti-bacterial thiol-ene networks with superior performance from renewable resources[J]. Polymer, 2017, 108: 215-222. |
15 | GUZMÁN D, RAMIS X, FERNÁNDEZ-FRANCOS X, et al. Preparation of click thiol-ene/thiol-epoxy thermosets by controlled photo/thermal dual curing sequence[J]. RSC Advances, 2015, 5(123): 101623-101633. |
16 | RESETCO C, HENDRIKS B, BADI N, et al. Thiol-ene chemistry for polymer coatings and surface modification-building in sustainability and performance[J]. Materials Horizons, 2017, 4(6): 1041-1053. |
17 | LUO X M, ZHANG P, LIU R, et al. Preparation and physical properties of functionalized graphene/waterborne polyurethane UV-curing composites by click chemistry[J]. Polymer International, 2016, 65(4): 415-422. |
18 | JIAO X J, LIU J L, JIN J, et al. UV-cured transparent silicone materials with high tensile strength prepared from hyperbranched silicon-containing polymers and polyurethane-acrylates[J]. ACS Omega, 2021, 6(4): 2890-2898. |
19 | 晏文康, 万里鹰. 基于两种双硫键自修复聚氨酯制备及性能[J]. 工程塑料应用, 2021, 49(2): 34-39. |
YAN Wenkang, WAN Liying. Preparation and performance of self-healing polyurethane based on two kind of disulfide bonds[J]. Engineering Plastics Application, 2021, 49(2): 34-39. | |
20 | LEI H B, HE D L, GUO Y N, et al. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer[J]. Applied Surface Science, 2018, 442: 71-77. |
21 | 叶桐, 魏铭, 刘晓芳, 等.磷酸酯反应型乳化剂在叔丙乳液中的应用及防腐性能[J]. 化工进展, 2021, 40(8): 4413-4420. |
YE Tong, WEI Ming, LIU Xiaofang, et al. Application of phosphate reactive emulsifier in vinyl versatate-acrylate emulsion and its anticorrosive property[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4413-4420. | |
22 | 姚久提, 魏铭, 刘晓芳, 等.氟硅改性无溶剂环氧涂料的制备与性能[J].化工进展, 2021, 40(8): 4421-4427. |
YAO jiuti, WEI Ming, LIU Xiaofang, et al. Preparation and properties of fluorosilicone modified solventless epoxy coatings [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4421-4427. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[4] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[5] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[6] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[7] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[8] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[9] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[10] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[11] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
[12] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[13] | WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, ZHAO Haonan, SONG Xiaoqi, GAO Jingsong, ZHANG Yibo, HUANG Chuanhui, LIU Yi, YANG Shaobin. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285. |
[14] | ZHANG Pingping, DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin. Carbon quantum dots modified semiconductor composite photocatalysts for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5487-5500. |
[15] | ZHANG Yingjie, LU Jiayue, WANG Fanggang. Synthesis of a new MCER and its performance in removing Cu(Ⅱ) from water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5558-5566. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 348
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 290
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |