Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4573-4586.DOI: 10.16085/j.issn.1000-6613.2020-2031
• Resources and environmental engineering • Previous Articles Next Articles
ZENG Maozhu1(), SHE Yuqi1(), HU Yubin1, WU Linjun1, YUAN Manjing1, QI Yi1, WANG Huan2, LIN Xuliang1, QIN Yanlin1()
Received:
2020-10-09
Online:
2021-08-12
Published:
2021-08-05
Contact:
QIN Yanlin
曾茂株1(), 佘煜琪1(), 胡玉彬1, 吴林军1, 袁慢景1, 漆毅1, 王欢2, 林绪亮1, 秦延林1()
通讯作者:
秦延林
作者简介:
曾茂株(1997—),男,硕士研究生,研究方向为木质素高值化利用。E-mail:基金资助:
CLC Number:
ZENG Maozhu, SHE Yuqi, HU Yubin, WU Linjun, YUAN Manjing, QI Yi, WANG Huan, LIN Xuliang, QIN Yanlin. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586.
曾茂株, 佘煜琪, 胡玉彬, 吴林军, 袁慢景, 漆毅, 王欢, 林绪亮, 秦延林. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2031
木质素种类 | 多孔炭制备方法 | 应用方向 | 相关文献 |
---|---|---|---|
有机溶剂木质素 | CO2活化 | 高性能吸附剂 | [ |
木质素磺酸盐 | 金属盐活化 | 吸附甲苯 | [ |
稻壳 | ZnCl2活化 | 电极材料 | [ |
酶解木质素 | 钾盐活化 | 电极材料 | [ |
冷杉(软木木质素) | — | 维生素吸附 | [ |
水解木质素 | 热裂解法 | 吸附剂 | [ |
生物-乙醇木质素 | 水热炭化法 | 超级电容器 | [ |
山毛榉(硬木木质素) | — | 电催化剂 | [ |
木质素种类 | 多孔炭制备方法 | 应用方向 | 相关文献 |
---|---|---|---|
有机溶剂木质素 | CO2活化 | 高性能吸附剂 | [ |
木质素磺酸盐 | 金属盐活化 | 吸附甲苯 | [ |
稻壳 | ZnCl2活化 | 电极材料 | [ |
酶解木质素 | 钾盐活化 | 电极材料 | [ |
冷杉(软木木质素) | — | 维生素吸附 | [ |
水解木质素 | 热裂解法 | 吸附剂 | [ |
生物-乙醇木质素 | 水热炭化法 | 超级电容器 | [ |
山毛榉(硬木木质素) | — | 电催化剂 | [ |
1 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG H, YANG D J, QIAN Y, et al. Progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
2 | 袁康帅, 郭大亮, 张子明, 等. 碱木质素基多孔炭材料的制备及其在超级电容器中的应用[J]. 中国造纸, 2019, 38(6): 47-53. |
YUAN K S, GUO D L, ZHANG Z M, et al. Preparation of alkali-lignin-based polyporous carbon materials and its application in supercapacitors[J]. China Pulp and Paper, 2019, 38(6): 47-53. | |
3 | RAGAN S, MEGONNELL N. Activated carbon from renewable resources-lignin[J]. Cellulose Chemistry and Technology, 2011, 45 (7/8): 527-531. |
4 | LIU W J, JIANG H, YU H Q. Thermochemical conversion of lignin to functional materials: a review and future directions[J]. Green Chemistry, 2015, 17(11): 4888-4907. |
5 | SAHA D, LI Y C, BI Z H, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910. |
6 | LAM E., LUONG J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals[J]. ACS Catalysis, 2014, 4(10): 3393-3410. |
7 | JEON J W, ZHANG L B, LUTKENHAUS J L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432. |
8 | LIU H C, CHIEN A T, NEWCOMB B A, et al. Processing, structure, and properties of lignin and CNT incorporated polyacrylonitrile-based carbon fibers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1943-1954. |
9 | LI Q, SEREM W K, DAI W, et al. Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber[J]. Journal of Materials Chemistry A, 2017, 5(25): 12740-12746. |
10 | WANG S C, ZHOU Z, XIANG H X, et al. Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes[J]. Composites Science and Technology, 2016, 128: 116-122. |
11 | SUHAS, CARROTT P J M, MMLR CARROTT. Lignin-from natural adsorbent to activated carbon: a review[J]. Bioresource Technology, 2007, 98(12): 2301-2312. |
12 | MENG Y, LU J, CHENG Y, et al. Lignin-based hydrogels: a review of preparation, properties, and application[J]. International Journal of Biological Macromolecules, 2019, 135: 1006-1019. |
13 | SHI Z J, MA M G. Synthesis, structure, and applications of lignin-based carbon materials: a review[J]. Science of Advanced Materials, 2019, 11(1): 18-32. |
14 | 张晨光, 王亚辉, 吴小亮. 生物质基多孔碳在超级电容器中的应用进展[J]. 现代化工, 2020, 40(4): 27-29, 35. |
ZHANG C G, WANG Y H, WU X L. Progress in the application of biomass based multi-pore carbon in supercapacitors[J]. Modern Chemical Industry, 2020, 40(4): 27-29, 35. | |
15 | 赵东江, 马松艳, 田喜强.生物质介孔炭的制备及其在电催化氧还原中的应用[J]. 炭素技术, 2019, 38(6): 6-11. |
ZHAO D J, MA S Y, TIAN X Q. Preparation of biomass mesoporous carbon and its application in electrocatalytic oxygen reduction[J]. Carbon Techniques, 2019, 38(6): 6-11. | |
16 | MAHMOOD F, ZHANG C, XIE Y C, et al. Transforming lignin into porous graphene via direct laser writing for solid-state supercapacitors[J]. RSC Advances, 2019, 9(39): 22713-22720. |
17 | CHO D W, YOON K, AHN Y, et al. Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes[J]. Journal of Hazardous Materials, 2019, 374: 412-419. |
18 | KIJIMA M, HIRUKAWA T, HANAWA F, et al. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials[J]. Bioresource Technology, 2011, 102(10): 6279-6285. |
19 | DU Q S, LI D P, LONG S Y, et al. Graphene like porous carbon with wood-ear architecture prepared from specially pretreated lignin precursor[J]. Diamond and Related Materials, 2018, 90: 109-115. |
20 | WANG X, LIU Y C, CHEN M Z, et al. Direct microwave conversion from lignin to micro/meso/macroporous carbon for high-performance symmetric supercapacitors[J]. ChemElectroChem, 2019, 6(18): 4789-4800. |
21 | ZHANG N Y, SHEN Y F. One-step pyrolysis of lignin and polyvinyl chloride for synthesis of porous carbon and its application for toluene sorption[J]. Bioresource Technology, 2019, 284: 325-332. |
22 | NUNES RENAN S, TUDINO TATIANE C, VIEIRA LIGIA M, et al. Rational production of highly acidic sulfonated carbons from kraft lignins employing a fractionation process combined with acid-assisted hydrothermal carbonization[J]. Bioresource Technology, 2020, 303: 122882. |
23 | CHEN W X, HU C F, YANG Y H, et al. Rapid synthesis of carbon dots by hydrothermal treatment of lignin[J]. Materials (Basel, Switzerland), 2016, 9(3):184. |
24 | SANGCHOOM W, MOKAYA R. Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1658-1667. |
25 | WU Y, CAO J P, ZHAO X Y, et al. High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2[J]. Applied Surface Science, 2020, 508: 144536. |
26 | ZHANG W, YU C Y, CHANG L B, et al. Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors[J]. Electrochimica Acta, 2018, 282: 642-652. |
27 | GUO N N, LI M, SUN X K, et al. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities[J]. Green Chemistry, 2017, 19(11): 2595-2602. |
28 | NIKOLAI PONOMAREV, SILLANPAA M. Combined chemical-templated activation of hydrolytic lignin for producing porous carbon[J]. Industrial Crops and Products, 2019, 135: 30-38. |
29 | WANG Nan, Fan HAI, AI Shiyun. Lignin templated synthesis of porous carbon-CeO2 composites and their application for the photocatalytic desulphuration[J]. Chemical Engineering Journal, 2015, 260: 785-790. |
30 | VALERO-ROMERO M J, MARQUEZ-FRANCO E M, BEDIA J, et al. Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution[J]. Microporous and Mesoporous Materials, 2014, 196: 68-78. |
31 | CHEN L, DENG J Q, SONG Y D, et al. Deep eutectic solvent promoted tunable synthesis of nitrogen-doped nanoporous carbons from enzymatic hydrolysis lignin for supercapacitors[J]. Materials Research Bulletin, 2020, 123: 110708. |
32 | GE W N, ZHOU Z P, ZHANG P, et al. Graphene oxide template-confined fabrication of hierarchical porous carbons derived from lignin for ultrahigh-efficiency and fast removal of ciprofloxacin[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 456-467. |
33 | ZHAO W H, LIN X Y, CAI H M, et al. Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium(Ⅵ)[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12745-12754. |
34 | LIU S, WEI W G, WU S B, et al. Preparation of hierarchical porous activated carbons from different industrial lignin for highly efficient adsorption performance[J]. Journal of Porous Materials, 2020, 27: 1523-1533. |
35 | ROWLANDSON J L, EDLER K J, TIAN M, et al. Toward process-resilient lignin-derived activated carbons for hydrogen storage applications[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5): 2186-2195. |
36 | LI B W, XIONG H, XIAO Y, et al. Efficient toluene adsorption on metal salt-activated porous carbons derived from low-cost biomass: a discussion of mechanism[J]. ACS Omega, 2020, 5(22): 13196-13206. |
37 | LI Y, HUANG Y, SONG K X, et al. Rice husk lignin-derived porous carbon anode material for lithium-ion batteries[J]. ChemistrySelect, 2019, 4(14): 4178-4184. |
38 | XI Y B, YANG D J, QIU X Q, et al. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation[J]. Industrial Crops and Products, 2018, 124: 747-754. |
39 | VEPRIKOVA E V, IVANOV I P, CHESNOKOV N V, et al. Effect of a porous structure of the carbon sorbents from abies wood lignin on sorption of the organic substances of different nature[J]. Journal of Siberian Federal University: Chemistry, 2018, 11(4): 488-499. |
40 | RAICHEVA L, RADEVA G, NENKOVA S, et al. Adsorption characteristics of activated carbon obtained from residual hydrolyzed lignin[J]. Bulgarian Chemical Communications, 2017, 49(1): 139-144. |
41 | ZHANG L M, YOU T T, ZHOU T, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13918-13925. |
42 | GRAGLIA M, PAMPEL J, HANTKE T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano, 2016, 10(4): 4364-4371. |
43 | CHEN W M, LUO M, YANG K, et al. Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: microwave absorber and porogen[J]. Microporous and Mesoporous Materials, 2020, 300: 110178. |
44 | ZHANG B P, YANG D J, QIU X Q, et al. Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 220-227. |
45 | WANG D W, NAI J W, XU L, et al. A Potassium formate activation strategy for the synthesis of ultrathin graphene-like porous carbon nanosheets for advanced supercapacitor applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18901-18911. |
46 | XI Y B, YANG D J, WANG Y Y, et al. Effect of structure of technical lignin on the electrochemical performance of lignin-derived porous carbon from K2CO3 activation[J]. Holzforschung, 2020, 74(3): 293-302. |
47 | XIONG X Q, ZHANG H, LAI S L, et al. Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2[J]. Reactive & Functional Polymers, 2020, 149: 104502. |
48 | CHENG F Y, LIANG J, ZHAO J Z, et al. Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake[J]. Chemistry of Materials, 2008, 20(5): 1889-1895. |
49 | GONZALEZ-SERRANO E, CORDERO T, RODRIGUEZ-MIRASOL J, et al. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors[J]. Water Research, 2004, 38(13): 3043-3050. |
50 | SAHA D, WARREN KAITLYN E, NASKAR AMIT K. Soft-templated mesoporous carbons as potential materials for oral drug delivery[J]. Carbon, 2014, 71: 47-57. |
51 | WANG S, SIMA G B, CUI Y, et al. Preparations of lignin-derived ordered mesoporous carbon by self-assembly in organic solvent and aqueous solution: comparison in textural property[J]. Materials Letters, 2020, 264: 127318. |
52 | QIN H F, JIAN R H, BAI J R, et al. Influence of molecular weight on structure and catalytic characteristics of ordered mesoporous carbon derived from lignin[J]. ACS Omega, 2018, 3(1): 1350-1356. |
53 | PALAZZOLO M A, DOURGES M A, MAGUERESSE A, et al. Preparation of lignosulfonate-based carbon foams by pyrolysis and their use in the microencapsulation of a phase change material[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2453-2461. |
54 | GRAGLIA M, PAMPEL J, HANTKE T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano, 2016, 10(4): 4364-4371. |
55 | SEO J Y, PARK H Y, SHIN K W, et al. Lignin-derived macroporous carbon foams prepared by using poly(methyl methacrylate) particles as the template[J]. Carbon, 2014, 76: 357-367. |
56 | LEE D W, JIN M H, PARK J H, et al. Flexible synthetic strategies for lignin-derived hierarchically porous carbon materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10454-10462. |
57 | CHANG Z S, DAI J D, XIE A, et al. From lignin to three-dimensional interconnected hierarchically porous carbon with high surface area for fast and superhigh-efficiency adsorption of sulfamethazine[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9367-9375. |
58 | LI H, ZHAO Y H, LIU S Q, et al. Hierarchical porous carbon monolith derived from lignin for high areal capacitance supercapacitors[J]. Microporous and Mesoporous Materials, 2020, 297: 109960. |
59 | PUZIY A M, PODDUBNAYA O I, SEVASTYANOVA O. Carbon materials from technical lignins: recent advances[J]. Topics in Current Chemistry, 2018, 376(4): 11. |
60 | CHISTYAKOV A V, TSODIKOV M V. Methods for preparing carbon sorbents from lignin (review)[J]. Russian Journal of Applied Chemistry, 2018, 91(7): 1090-1105. |
61 | CHATTERJEE S, SAITO T. Lignin-derived advanced carbon materials[J]. Chemsuschem, 2015, 8(23): 3941-3958. |
62 | XI Y B, HUANG S, YANG D J, et al. Hierarchical porous carbon derived from the gasexfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chem., 2020, 22: 4321-4330. |
63 | TAO L, XU Z R, KUAI C G, et al. Flexible lignin carbon membranes with surface ozonolysis to host lean lithium metal anodes for nickel-rich layered oxide batteries[J]. Energy Storage Materials, 2020, 24: 129-137 |
64 | DEMIR M, TESSEMA T D, FARGHALY A A, et al. Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications[J]. International Journal of Energy Research, 2018, 42(8): 2686-2700. |
65 | XU J, ZHOU X Y, CHEN M Z. Microwave-assisted synthesis of Cu-doped hierarchical porous carbon aerogels derived from lignin for high-performance supercapacitors[J]. Materials Research Express, 2018, 5(9): 11. |
66 | YIN W M, TIAN L F, PANG B, et al. Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor[J]. International Journal of Biological Macromolecules, 2020, 156: 988-996. |
67 | PARK S, CHOI M S, PARK H S. Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity[J]. Carbon Letters, 2019, 29(3): 289-296. |
68 | ZHU B L, HUANG J Z, LU J R, et al. Worm-like hierarchical porous carbon derived from bio-renewable lignin with high CO2 capture capacity[J]. International Journal of Electrochemical Science, 2017, 12(12): 11102-11107. |
69 | WANG A Q, ZHENG Z K, LI R Q, et al. Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. Green Energy & Environment, 2019, 4(4): 414-423. |
70 | LYU D, LI Y, WANG L J. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal[J]. International Journal of Biological Macromolecules, 2020, 148: 979-987. |
71 | LI J M, LI X Y, HAN G C, et al. Salt-template hydrothermal carbonization for Pd NP-loaded porous carbonaceous material[J]. Bioresources, 2019, 14(2): 3630-3650. |
72 | RUSANEN A, RIIKKA K, KATJA L, et al. Conversion of xylose to furfural over lignin-based activated carbon-supported iron catalysts[J]. Catalysts, 2020, 10(8): 820. |
73 | ZHANG B P, YANG D J, QIAN Y, et al. Engineering a lignin-based hollow carbon with opening structure for highly improving the photocatalytic activity and recyclability of ZnO[J]. Industrial Crops and Products, 2020, 155: 10. |
74 | HAN G C, JIANG Q M, YE W J, et al. Fabrication of Pd NPs-supported porous carbon by integrating the reducing reactivity and carbon-rich network of lignin[J]. Scientific Reports, 2019, 9: 9. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[3] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[4] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[5] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[6] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[7] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[8] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[9] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[10] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[11] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[12] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[13] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[14] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[15] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |