Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5512-5518.DOI: 10.16085/j.issn.1000-6613.2019-0520
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Shuo SUN(),Qiyou LIU(),Shuiquan CHEN,Chaocheng ZHAO,Wenhe YU
Received:
2019-04-04
Online:
2019-12-05
Published:
2019-12-05
Contact:
Qiyou LIU
通讯作者:
刘其友
作者简介:
孙烁(1994—),女,硕士研究生,研究方向为环境生物技术、“三废”治理与资源化技术。E-mail:基金资助:
CLC Number:
Shuo SUN,Qiyou LIU,Shuiquan CHEN,Chaocheng ZHAO,Wenhe YU. Optimization for degradation of total petroleum hydrocarbon by the strain L-2 with response surface methodology[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5512-5518.
孙烁,刘其友,陈水泉,赵朝成,于文赫. 利用响应面法对L-2菌株降解石油烃进行优化[J]. 化工进展, 2019, 38(12): 5512-5518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0520
自变量 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
温度(A)/℃ | 30 | 35 | 40 |
pH(B) | 6 | 7 | 8 |
TPH质量浓度(C)/g·L-1 | 2 | 4 | 6 |
自变量 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
温度(A)/℃ | 30 | 35 | 40 |
pH(B) | 6 | 7 | 8 |
TPH质量浓度(C)/g·L-1 | 2 | 4 | 6 |
实验编号 | 温度/℃ | pH | TPH质量浓度 /g·L-1 | 降解率/% | |
---|---|---|---|---|---|
实际值 | 预测值 | ||||
1 | 30 | 7 | 2 | 74.85 | 74.67 |
2 | 35 | 7 | 4 | 69.37 | 69.62 |
3 | 35 | 6 | 6 | 25.68 | 27.28 |
4 | 35 | 6 | 2 | 33.26 | 31.65 |
5 | 35 | 7 | 4 | 68.98 | 69.62 |
6 | 35 | 8 | 2 | 28.56 | 31.65 |
7 | 40 | 7 | 6 | 18.26 | 20.23 |
8 | 35 | 7 | 4 | 64.56 | 69.62 |
9 | 35 | 7 | 4 | 73.89 | 69.62 |
10 | 30 | 8 | 4 | 67.88 | 69.27 |
11 | 35 | 7 | 4 | 71.3 | 69.62 |
12 | 40 | 6 | 4 | 20.58 | 19.19 |
13 | 35 | 8 | 6 | 30.36 | 26.32 |
14 | 30 | 7 | 6 | 70.8 | 70.31 |
15 | 40 | 8 | 4 | 4.09 | 4.81 |
16 | 40 | 7 | 2 | 25.89 | 24.59 |
17 | 30 | 6 | 4 | 55.6 | 54.88 |
实验编号 | 温度/℃ | pH | TPH质量浓度 /g·L-1 | 降解率/% | |
---|---|---|---|---|---|
实际值 | 预测值 | ||||
1 | 30 | 7 | 2 | 74.85 | 74.67 |
2 | 35 | 7 | 4 | 69.37 | 69.62 |
3 | 35 | 6 | 6 | 25.68 | 27.28 |
4 | 35 | 6 | 2 | 33.26 | 31.65 |
5 | 35 | 7 | 4 | 68.98 | 69.62 |
6 | 35 | 8 | 2 | 28.56 | 31.65 |
7 | 40 | 7 | 6 | 18.26 | 20.23 |
8 | 35 | 7 | 4 | 64.56 | 69.62 |
9 | 35 | 7 | 4 | 73.89 | 69.62 |
10 | 30 | 8 | 4 | 67.88 | 69.27 |
11 | 35 | 7 | 4 | 71.3 | 69.62 |
12 | 40 | 6 | 4 | 20.58 | 19.19 |
13 | 35 | 8 | 6 | 30.36 | 26.32 |
14 | 30 | 7 | 6 | 70.8 | 70.31 |
15 | 40 | 8 | 4 | 4.09 | 4.81 |
16 | 40 | 7 | 2 | 25.89 | 24.59 |
17 | 30 | 6 | 4 | 55.6 | 54.88 |
类型 | 平方和SS | 自由度DF | 均方值 | F | P |
---|---|---|---|---|---|
模型 | 8312.85 | 9 | 1052.51 | 134.19 | <0.0001 |
A | 1762.99 | 1 | 5015.51 | 643.23 | <0.0001 |
B | 3.62 | 1 | 2.24 | 0.29 | 0.6088 |
C | 1013.40 | 1 | 38.11 | 4.99 | 0.0627 |
AB | 43.56 | 1 | 206.93 | 26.54 | 0.0013 |
AC | 485.76 | 1 | 3.20 | 0.41 | 0.5419 |
BC | 116.42 | 1 | 22.00 | 2.82 | 0.1369 |
A2 | 79.27 | 1 | 224.30 | 28.77 | 0.0010 |
B2 | 1196.03 | 1 | 2691.65 | 345.20 | <0.0001 |
C2 | 3272.58 | 1 | 931.18 | 119.42 | <0.0001 |
残差 | 378.21 | 7 | 7.80 | — | — |
失拟项 | 162.26 | 3 | 2.48 | 0.21 | 0.8842 |
纯误差 | 215.94 | 4 | 11.78 | — | — |
总和 | 8691.06 | 16 | — | — | — |
类型 | 平方和SS | 自由度DF | 均方值 | F | P |
---|---|---|---|---|---|
模型 | 8312.85 | 9 | 1052.51 | 134.19 | <0.0001 |
A | 1762.99 | 1 | 5015.51 | 643.23 | <0.0001 |
B | 3.62 | 1 | 2.24 | 0.29 | 0.6088 |
C | 1013.40 | 1 | 38.11 | 4.99 | 0.0627 |
AB | 43.56 | 1 | 206.93 | 26.54 | 0.0013 |
AC | 485.76 | 1 | 3.20 | 0.41 | 0.5419 |
BC | 116.42 | 1 | 22.00 | 2.82 | 0.1369 |
A2 | 79.27 | 1 | 224.30 | 28.77 | 0.0010 |
B2 | 1196.03 | 1 | 2691.65 | 345.20 | <0.0001 |
C2 | 3272.58 | 1 | 931.18 | 119.42 | <0.0001 |
残差 | 378.21 | 7 | 7.80 | — | — |
失拟项 | 162.26 | 3 | 2.48 | 0.21 | 0.8842 |
纯误差 | 215.94 | 4 | 11.78 | — | — |
总和 | 8691.06 | 16 | — | — | — |
统计项目 | 数值 |
---|---|
标准偏差 | 2.86 |
平均值 | 47.29 |
偏差系数CV/% | 6.06 |
预测误差平方和 | 193.58 |
确定系数R2 | 0.9943 |
调整系数R2 | 0.9862 |
预测系数R2 | 0.9797 |
精密度 | 38.017 |
统计项目 | 数值 |
---|---|
标准偏差 | 2.86 |
平均值 | 47.29 |
偏差系数CV/% | 6.06 |
预测误差平方和 | 193.58 |
确定系数R2 | 0.9943 |
调整系数R2 | 0.9862 |
预测系数R2 | 0.9797 |
精密度 | 38.017 |
1 | PRASAD N, DASGUPTA S, CHAKRABORTY M, et al. Isolation and characterization of biosurfactant producing bacteria for the application in enhanced oil recovery[J]. IOP Conference Series: Earth and Environmental Science, 2017, 78: 12-17. |
2 | KUMARI S, KUMAR REGAR R, MANICHAM N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria[J]. Bioresource Technology, 2018, 254: 174-179. |
3 | WU M, LI W, DICK W A, et al. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination[J]. Chemosphere, 2017, 169: 124-130. |
4 | BUDDHADASA S C, BARONE S, GIBSON E, et al. Method dependency in the measurement of BTEX levels in contaminated soil[J]. Journal of Soils and Sediments, 2002, 2(3): 137-142. |
5 | ABED R M M, KHARUSI S, HINAI M. Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil[J]. International Biodeterioration & Biodegradation, 2015, 98:43-52. |
6 | USNAN M. Comment on a comprehensive guide of remediation technologies for oil contaminated soil-present works and future directions[J]. Marine Pollution Bulletin, 2016, 109(1): 14-45. |
7 | SINGH A, HAMME J D V, WARD O P. Surfactants in microbiology and biotechnology: part 2. Application aspects[J]. Biotechnology Advances, 2007, 25(1): 99-121. |
8 | VARJANI S J, UPASANI V N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants[J]. International Biodeterioration & Biodegradation, 2017, 120: 71-83. |
9 | WU Manli, CHEN Liming, TIAN Yongqiang, et al. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media[J]. Environmental Pollution, 2013, 178(1): 152-158. |
10 | DAS K, MUKHERJEE A K. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from north-east India[J]. Bioresource Technology, 2007, 98(7): 1339-1345. |
11 | MANLI M. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil[J]. International Biodeterioration & Biodegradation, 2016, 107: 158-164. |
12 | JASMINE J, MUKHERJI S. Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia[J]. Journal of Environmental Management, 2015, 149: 118-125. |
13 | EUAN S. Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques[J]. International Biodeterioration & Biodegradation, 2015, 101: 56-65. |
14 | CASON E D, VERMEULEN J G, WALTER J, et al. Aerobic and anaerobic enrichment cultures highlight the pivotal role of facultative anaerobes in soil hydrocarbon degradation[J]. Journal of Environmental Science and Health Part A, 2019, 54: 408-415. |
15 | RUBERTO L, VAZQUEZ S C, CORMACK W P M. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil[J]. International Biodeterioration & Biodegradation, 2003, 52(2): 115-125. |
16 | EBKOWSKA M, ZBOROWSKA E, KARWOWSKA E, et al. Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: field-scale processes in Poland[J]. Ecological Engineering, 2011, 37(11): 1895-1900. |
17 | SUJA F, RAHIM F, TAHA M R, et al. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons(TPH) in crude oil contaminated soil based on laboratory and field observations[J]. International Biodeterioration & Biodegradation, 2014, 90: 115-122. |
18 | KONG Fanxin, SUN Guangdong, LIU Zhipei. Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: performance and mechanism[J]. Chemosphere, 2018, 198: 83-91. |
19 | ROY A, DUTTA A, PAL S, et al. Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge[J]. Bioresource Technology, 2018, 253: 22-32. |
20 | CHEN Shuiquan, SUN Shuo, ZHAO Chaocheng, et al. Biodesulfurization of model oil using growing cells of Gordonia sp. SC-10[J]. Petroleum Science and Technology, 2019, 37: 907-912. |
21 | OTHMAN N, ABDULTALIB S, TAY C C. Optimization of low ring polycylic aromatic biodegradation[J]. IOP Conference Series: Materials Science and Engineering, 2016, 136: 12-54 |
22 | JADHAV S B, CHOUGULE A S, SHAH D P, et al. Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays[J]. Clean Technologies and Environmental Policy, 2015, 17(3): 709-720. |
23 | BOLLl M, LFFLER C, MORRIS B E L, et al. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme a esters: organisms, strategies and key enzymes[J]. Environmental Microbiology, 2014, 16(3): 612-627. |
24 | ADMON S, GREEN M, AVNIMELECH Y. Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge[J]. Bioremediation Journal, 2001, 5(3): 193-209. |
25 | ZHANG Xiuxia, WU Haijie, HAN Yutong, et al. Remediation of petroleum contaminated soil by modified straw carrier immobilized microorganism[J]. Acta Petrolei Sinica, 2014, 30(5): 915-920. |
26 | MUTHUKUMAR V, RAJESH N, VENKATASAMY R, et al. Mathematical modeling for radial overcut on electrical discharge machining of incoloy 800 by response surface methodology[J]. Procedia Materials Science, 2014, 6: 1674-1682. |
27 | LI Lin, ZHAO Chaocheng, LIU Qiyou, et al. Optimization for microbial degradation of dibenzothiophene by pseudomonas sp. LKY-5 using response surface methodology[J]. China Petroleum Processing & Petrochemical Technology, 2014, 16(1):19-26. |
28 | CHEN Shuiquan, SUN Shuo, ZHAO Chaocheng, et al. Optimization of biodegradation of polycyclic aromatic sulfur heterocycles in soil using response surface methodology[J]. Petroleum Science and Technology, 2018, 36: 1883-1890. |
29 | VIRUPAKSHAPPA P K, KRISHNASWAMY M B, MISHRA G, et al. Optimization of crude oil and PAHs degradation by stenotrophomonas rhizophila KX082814 strain through response surface methodology using Box-Behnken design[J]. Biotechnology Research International, 2016, 2016: 1-13. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[6] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[7] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[8] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[9] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[10] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[11] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[12] | WANG Dong, YU Pinhua, CHEN Bin, XIAO Ang, CHEN Feng, JIANG Yangyang. Energy saving optimization of cyclohexane three-effect distillation in cyclohexanone production [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2245-2251. |
[13] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[14] | LIU Guangping, LU Zhenneng, GONG Yulie. Dynamic response and disturbance optimization of high temperature heat pump steam systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1719-1727. |
[15] | WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |