Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (09): 3437-3445.DOI: 10.16085/j.issn.1000-6613.2017-2174
Previous Articles Next Articles
HAN Senjian, WANG Haizeng
Received:
2017-10-24
Revised:
2018-02-09
Online:
2018-09-05
Published:
2018-09-05
韩森建, 王海增
通讯作者:
王海增,博士,教授,研究方向为海水化学资源综合利用。
作者简介:
韩森建(1989-),女,博士研究生,研究方向为镁资源利用。E-mail:senjianhan@163.com。
基金资助:
CLC Number:
HAN Senjian, WANG Haizeng. A new material of magnesium complexes——magnesium based metal organic frameworks[J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3437-3445.
韩森建, 王海增. 一类新型镁材料——镁基金属有机骨架材料[J]. 化工进展, 2018, 37(09): 3437-3445.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-2174
[1] BI S F, CUI X M. The exploitation and comprehensive utilization of magnesium resources in Salt Lakes of China[J]. Acta Geologica Sinica, 2014, 88(s1):294-295. [2] HUANG Y L, GONG Y N, JIANG L, et al. A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties[J]. Chemical Communications, 2013, 49(17):1753. [3] KITAGAWA S, KITAURA R, NORO S. Functional porous coordination polymers[J]. Angewandte Chemie International Edition, 2004, 43(18):2334-2375. [4] 张所瀛, 刘红, 刘朋飞, 等. 金属有机骨架材料在CO2/CH4吸附分离中的研究进展[J]. 化工学报, 2014, 65(5):1563-1570. ZHANG S Y, LIU H, LIU P F, et al. Progress of adsorption-based CO2/CH4 separation by metal organic frameworks[J]. CIESC Journal, 2014, 65(5):1563-1570. [5] HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9(2):172-178. [6] COTE A P, SHIMIZU G K. Coordination solids via assembly of adaptable components:systematic structural variation in alkaline earth organosulfonate networks[J]. Chemistry:A European Journal, 2010, 9(21):5361-5370. [7] DINCA M, LONG J R. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2 C-C10 H6-CO2)3[J]. Journal of the American Chemical Society, 2005, 127(26):9376-9377. [8] XIE Y M, WU J H. A trinuclear magnesium based metal-organic framework with self-penetrated rob topology[J]. Inorganica Chimica Acta, 2014, 412:15-19. [9] BISWAS A, KIM M B, KIM S Y, et al. A novel 3-D microporous magnesium-based metal-organic framework with open metal sites[J]. RSC Advances, 2016, 6(85):81485-81490. [10] LIU Y, CHEN Y P, LIU T F, et al. Selective gas adsorption and unique phase transition properties in a stable magnesium metal-organic framework constructed from infinite metal chains[J]. CrystEngComm, 2013, 15(45):9688-9693. [11] SENKOVSKA I, KASKEL S. Solvent-induced pore-size adjustment in the metal-organic framework[Mg3 (ndc)3 (dmf)4] (ndc=naphthalenedicarboxylate)[J]. European Journal of Inorganic Chemistry, 2006(22):4564-4569. [12] CHAEMCHUEN Somboon, 周奎, 姚宸, 等. 碱性金属修饰金属有机骨架材料MOF-5吸附位点及其常态下分离二氧化碳/甲烷的应用[J].应用化学, 2015, 32(5):552-556. CHAEMCHUEN S, ZHOU K, YAO C, et al. Alkali-metal tuning of adsorption sites in metal organic frameworks MOF-5 for carbon dioxide/methane separation at ambient conditions[J]. Chinese Journal of Applied Chemistry, 2015, 32(5):552-556. [13] MALLICK A, SAHA S, PACHFULE P, et al. Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites[J]. Journal of Materials Chemistry, 2010, 20(41):9073-9080. [14] MAZAJ M, CELIC T B, MALI G, et al. Control of the crystallization process and structure dimensionality of Mg-benzene-1,3,5-tricarboxylates by tuning solvent composition[J]. Crystal Growth & Design, 2013, 13(8):3825-3834. [15] GUO Y, FENG X, HAN T, et al. Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds[J]. Journal of the American Chemical Society, 2014, 136(44):15485-15488. [16] MAO H, XU J, HU Y, et al. The effect of high external pressure on the structure and stability of MOF α-Mg3 (HCOO)6 probed by in situ Raman and FT-IR spectroscopy[J]. Journal of Materials Chemistry A, 2015, 3(22):11976-11984. [17] YANG D A, CHO H Y, KIM J, et al. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method[J]. Energy & Environmental Science, 2012, 5(4):6465-6473. [18] VIERTELHAUS M, ANSON C E, DR A K P. Solvothermal synthesis and crystal structure of one-dimensional chains of anhydrous zinc and magnesium formate[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2005, 631(12):2365-2370. [19] MALLICK A, SAHA S, PACHFULE P, et al. Structure and gas sorption behavior of a new three dimensional porous magnesium formate[J]. Inorganic Chemistry, 2011, 50(4):1392-1401. [20] STEIN I, RUSCHEWITZ U. Mechanochemical synthesis of new coordination polymers with acetylenedicarboxylate as bridging ligand[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2010, 636(2):400-404. [21] KAM K C, YOUNG K L M, CHEETHAM A K. Chemical and structural diversity in chiral magnesium tartrates and their racemic and meso analogues[J]. Crystal Growth & Design, 2007, 7(7):1522-1532. [22] GRIRRANE A, PASTOR A, ALVAREZ E, et al. Magnesium dicarboxylates:first structurally characterized oxydiacetate and thiodiacetate magnesium complexes[J]. Inorganic Chemistry Communications, 2005, 8(5):453-456. [23] DIETZEL P D C, BLOM R, FJELLVAG H. Base-induced formation of two magnesium metal-organic framework compounds with a bifunctional tetratopic ligand[J]. European Journal of Inorganic Chemistry, 2008, 2008(23):3624-3632. [24] ROOD J A, NOLL B C, HENDERSON K W. Cubic networks and 36 tilings assembled from isostructural trimeric magnesium aryldicarboxylates[J]. Main Group Chemistry, 2006, 5(1):21-30. [25] DAVIES R P, LESS R J, LICKISS P D, et al. Framework materials assembled from magnesium carboxylate building units[J]. Dalton Transactions, 2007, 24(24):2528-2535. [26] WILLIAMS C A, BLAKE A J, WILSON C, et al. Novel metal-organic frameworks derived from group Ⅱ metal cations and aryldicarboxylate anionic ligands[J]. Crystal Growth & Design, 2008, 8(3):911-922. [27] HE Y, SHANG J, ZHAO Q, et al. A comparative study on conversion of porous and non-porous metal-organic frameworks(MOFs) into carbon-based composites for carbon dioxide capture[J]. Polyhydron, 2016, 120:30-35. [28] GURUNATHA K L, UEMURA K, MAJI T K. Temperature-and stoichiometry-controlled dimensionality in a magnesium 4,5-imidazoledicarboxylate system with strong hydrophilic pore surfaces[J]. Inorganic Chemistry, 2008, 47(15):6578-6580. [29] BOHNSACK A M, IBARRA I A, HATFIELD P W, et al. High capacity CO2 adsorption in a Mg(Ⅱ)-based phosphine oxide coordination material[J]. Chemical Communications, 2011, 47(17):4899-4901. [30] BANERJEE R, MALLICK A, GARAI B, et al. Solid state organic amine detection in a photochromic porous metal organic framework[J]. Chemical Science, 2015, 6(2):1420-1425. [31] INGLESON M J, BARRIO J P, BACSA J, et al. Magnesium borohydride confined in a metal-organic framework:a preorganized system for facile arene hydroboration[J]. Angewandte Chemie, 2009, 48(11):2012-2016. [32] PLATEROPRATS A E, IGLESIAS M, SNEJKO N, et al. From coordinatively weak ability of constituents to very stable alkaline-earth sulfonate metal-organic frameworks[J]. Crystal Growth & Design, 2011, 11(5):1750-1758. [33] VALERIO C C, MUNOZ HERN A NDEZ M A, GREVY J M. Reactivity of Zn(Ⅱ), Mg(Ⅱ) and Al(Ⅲ) chlorides with a phosphinimine ligand:new tetrameric inverse crown ether structures[J]. Dalton Transactions, 2010, 39(28):6441-6448. [34] DENG H, GRUNDER S, CORDOVA K E, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084):1018-1023. [35] WITMAN M, LING S, ANDERSON S, et al. In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis[J]. Chemical Science, 2016, 7(9):6263-6272. [36] BRITT D, FURUKAWA H, WANG B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49):20637-20640. [37] SACCOCCIA B, BOHNSACK A M, WAGGONER N W, et al. Separation of p-divinylbenzene by selective room-temperature adsorption inside Mg-CUK-1 prepared by aqueous microwave synthesis[J]. Angewandte Chemie, 2015, 54(18):5394-5398. [38] SAHA D, SEN R, MAITY T, et al. Porous magnesium carboxylate framework:synthesis, X-ray crystal structure, gas adsorption property and heterogeneous catalytic aldol condensation reaction[J]. Dalton Transactions, 2012, 41(24):7399-7408. [39] LIU D, LIU X, LIU Y, et al. Host-guest interaction dictated selective adsorption and fluorescence quenching of a luminescent lightweight metal-organic framework toward liquid explosives[J]. Dalton Transactions, 2014, 43(40):15237-15244. [40] REMY T, PETER S A, PERRE S V D, et al. Selective dynamic CO2 separations on Mg-MOF-74 at low pressures:a detailed comparison with 13X[J]. Journal of Physical Chemistry C, 2013, 117(18):9301-9310. [41] VERYASOV G, HARINAGA U, MATSUMOTO K, et al. Crystallographic insight into the Mg2+ coordination mode and N(SO2CF3)2- anion conformation in Mg[N(SO2CF3)2]2 and its adducts[J]. European Journal of Inorganic Chemistry, 2017(7):1087-1099. [42] PELI G, MASCIOCCHI N, GARLASCHELLI L, et al. Synthesis, structure and thermal behaviour of two magnesium complexes containing the 1,4-bis(5-tetrazolyl)benzene ligand[J]. Inorganica Chimica Acta, 2009, 362(12):4630-4634. [43] SON W J, KIM J, AHN W S. Sonochemical synthesis of MOF-5[J]. Chemical Communications, 2008, 47:6336-6338. [44] TAHMASIAN A, MORSALI A, SANG W J. Sonochemical syntheses of a one-dimensional Mg(Ⅱ) metal-organic framework:a new precursor for preparation of MgO one-dimensional nanostructure[J]. Journal of Nanomaterials, 2013(3):1-7. [45] 吴兆锋.若干镁基金属有机框架化合物的合成与表征[D].衡阳:南华大学, 2014. WU Z F. The synthesis and characterization of some magnesium metal-organic framework[D]. Hengyang:University of South China, 2014. [46] MCDONALD T M, LEE W R, MASON J A, et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2 (dobpdc)[J]. Journal of the American Chemical Society, 2012, 134(16):7056-7065. [47] KIM J, KIM S N, JANG H G, et al. CO2 cycloaddition of styrene oxide over MOF catalysts[J]. Applied Catalysis A:General, 2013, 453(6):175-180. [48] PHAM T, FORREST K A, FALCAO E H, et al. Exceptional H2 sorption characteristics in a Mg2+ -based metal-organic framework with small pores:insights from experimental and theoretical studies[J]. Physical Chemistry Chemical Physics, 2016, 18(3):1786-1796. [49] SUKSAENGRAT P, AMORNKITBAMRUNG V, SREPUSHARAWOOT P, et al. Density functional theory study of hydrogen adsorption in a Ti-decorated Mg-based metal-organic framework-74[J]. ChemPhySchem:A European Journal of Chemical Physics & Physical Chemistry, 2016, 17(6):879-884. [50] LIN Q, WU T, ZHENG S T, et al. A chiral tetragonal magnesiumcarboxylate framework with nanotubular channels[J]. Chemical Communications, 2011, 47(43):11852. [51] DIETZEL P D, GEORGIEV P A, ECKERT J, et al. Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M2 (dhtp)(CPO-27-M; M=Ni, Co, Mg)[J]. Chemical Communications, 2010, 46(27):4962-4964. [52] WU H, ZHOU W, YILDIRIM T. High-capacity methane storage in metal-organic frameworks M2 (dhtp):the important role of open metal sites[J]. Journal of the American Chemical Society, 2009, 131(13):4995-5000. [53] LI Y P, ZHANG L J, JI W J. Synthesis, characterization, crystal structure of magnesium compound based 3,3',5,5'-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation[J]. Journal of Molecular Structure, 2017, 1133:607-614. [54] BAO Z, YU L, REN Q, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid & Interface Science, 2011, 353(2):549-556. [55] 姜宁, 邓志勇, 王公应, 等.金属有机框架材料的制备及其在吸附分离CO2 中的应用[J].化学进展, 2014,26(10):1645-1654. JIANG N, DENG Z Y, WANG G Y, et al. Preparation of metal-organic frameworks and application for CO2 adsorption and separation[J]. Progress in Chemistry, 2014, 26(10):1645-1654. [56] HU J, SUN T, LIU X, et al. Rationally tuning the separation performances of[M3 (HCOO)6] frameworks for CH4/N2 mixtures via metal substitution[J]. Microporous & Mesoporous Materials, 2016, 225:456-464. [57] XU J, YU Y, LI G, et al. A porous magnesium metal-organic framework showing selective adsorption and separation of nitrile guest molecules[J]. RSC Advances, 2016, 6(106):104451-104455. [58] DOUVALI A, TSIPIS A C, ELISEEVA S V, et al. Turn-on luminescence sensing and real-time detection of traces of water in organic solvents by a flexible metal-organic framework[J]. Angewandte Chemie, 2015, 54(5):1651-1656. [59] ZHAI L, ZHANG W W, ZUO J L, et al. Simultaneous observation of ligand-based fluorescence and phosphorescence within a magnesiumbased CP/MOF at room temperature[J]. Dalton Transactions, 2016, 45(30):11935-11938. [60] 乔智威, 李理波, 周健.生物相容性金属-有机骨架材料负载药物的分子模拟[J].高等学校化学学报, 2014, 35(12):2638-2644. QIAO Z W, LI L B, ZHOU J. Molecular simulations of biocompatible metal-organic frameworks for drug carrier application[J]. Chemical Journal of Chinese Universities, 2014, 35(12):2638-2644. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[3] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[4] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[5] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[6] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[7] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[8] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[9] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[10] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[11] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[12] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
[13] | ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng. Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594. |
[14] | PANG Nanjiong, WANG Xiaoling, LIAO Xuepin, SHI Bi. Separation of boron isotopes by collagen fibers-immobilized black wattle tannin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2616-2625. |
[15] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |