Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (09): 3446-3453.DOI: 10.16085/j.issn.1000-6613.2018-0053
Previous Articles Next Articles
LI Ying1, ZHANG Xiangping2
Received:
2018-01-05
Revised:
2018-03-07
Online:
2018-09-05
Published:
2018-09-05
李英1, 张香平2
通讯作者:
李英(1975-),女,副教授,研究方向为过程系统工程。
作者简介:
李英(1975-),女,副教授,研究方向为过程系统工程。E-mail:liying@djtu.edu.cn。
基金资助:
CLC Number:
LI Ying, ZHANG Xiangping. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3446-3453.
李英, 张香平. 用于高温质子交换膜燃料电池的聚合物电解质膜研究进展[J]. 化工进展, 2018, 37(09): 3446-3453.
[1] ROSLI R E, SULONG A B, DAUD W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42(14):9293-9314. [2] AUTHAYANUM S, IM-ORB K, ARPORNWICHANOP A. A review of the development of high temperature proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, 2015, 36(4):473-483. [3] CHEN H, PEI P, SONG M. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cell[J]. Applied Energy, 2015, 142:154-163. [4] WANG J T, BAI H J, ZHANG H Q, et al. Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles[J]. Electrochimica Acta, 2015, 152:443-455. [5] 王学军, 王丽, 张永明. 短侧链全氟磺酸膜材料[J]. 化工进展, 2014, 33(12):3283-3291. WANG Xuejun, WANG Li, ZHANG Yongming. Short-side chain perfluorosulfonic acid membrane materials[J]. Chemical Industry and Engineering Progress, 2014, 33(12):3283-3291. [6] LI J, PAN M, TANG H. Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells[J]. RSC Advances, 2014, 4(8):3944-3965. [7] STASSI A, GATTO I, PASSALACQUA E, et al. Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation[J]. Journal of Power Sources, 2011, 196(21):8925-8930. [8] XIAO P, LI J R, CHEN R, et al. Understanding of temperature-dependent performance of short-side-chain perfluorosulfonic acid electrolyte and reinforced composite membrane[J]. International Journal of Hydrogen Energy, 2014, 39:15948-15955. [9] KREUER K D, SCHUSTER M, OBLIERS B, et al. Short-side-chain proton conducting perfluorosulfonic acid ionomers:why they perform better in PEM fuel cells[J]. Journal of Power Sources, 2008, 178(2):499-509. [10] 孙媛媛, 屈树国, 李建隆. 质子交换膜燃料电池用磺化聚醚醚酮膜的研究进展[J]. 化工进展, 2016, 35(9):2850-2860. SUN Yuanyuan, QU Shuguo, LI Jianlong. Research progress of the sulfonated poly(ether ether ketone)s membranes for proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2016, 35(9):2850-2860. [11] PARK K T, CHUN J H, SANG G K, et al. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for high temperature PEMFC applications[J]. International Journal of Hydrogen Energy, 2011, 36(2):1813-1819. [12] KIM J D, DONNADIO A, JUN M S, et al. Corsslinked SPES-SPPSU membranes for high temperature PEMFCs[J]. International Journal of Hydrogen Energy, 2013, 38(3):1517-1823. [13] AHSANUL HAQUE M, SULONG A B, LOH K S, et al. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell:a review[J]. International Journal of Hydrogen Energy, 2016, 42(14):9156-9179. [14] MADER J A, BENICEWICZ B C. Sulfonated polybenzimidazoles for high temperature PEM fuel cells[J]. Macromolecules, 2010, 43(16):6706-6715. [15] DEVRIM Y, DEVRIM H, EROGLU I. Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(23):10044-10052. [16] ASENSIO J A, SANCHEZAB E M, GÓMEZ-ROMERO P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest[J]. Chemical Society Reviews, 2010, 39(8):3210-3239. [17] CHANDAN A, HATTENBERGER M, EL-KHAROUF A, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC):a review[J]. Journal of Power Sources, 2013, 231(2):264-278. [18] WANNEK C, LEHNERT W, MERGEL J. Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers[J]. Journal of Power Sources, 2009, 192(2):258-266. [19] ABOUZARI-LOTF E, GHASSEMI H, MEHDIPOUR-ATAEI S, et al. Phosphonated polyimides:enhancement of proton conductivity at high temperatures and low humidity[J]. Journal of Membrane Science, 2016, 516:74-82. [20] ÖZDEMIR Y, ÜREGEN N, DEVRIM Y. Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 42(4):2648-2657. [21] LI X B, MA H W, SHEN Y C, et al. Dimensionally-stable phosphoric acid-doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2016, 336:391-400. [22] MALIK R S, TRIPATHI S N, GUPTA D, et al. Novel anhydrous composite membranes based on sulfonated poly (ether ketone) and aprotic ionic liquids for high temperature polymer electrolyte membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2014, 39(24):12826-12834. [23] ZHANG H Q, WU W J, WAND J T, et al. Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways[J].Journal of Membrane Science, 2015, 476:136-147. [24] XU C X, LIU X T, CHENG J G, et al. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 274:922-927. [25] LEE S Y, YASUDA T, WATANABE M. Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for nonhumidified fuel cells[J]. Journal of Power Sources, 2010, 195(18):5909-5914. [26] VAN DE VEN E, CHAIRUNA A, MERLE G, et al. Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications[J]. Journal of Power Sources, 2013, 222(4):202-209. [27] FANG J, LIN X, CAI D, et al. Preparation and characterization of novel pyridine-containing membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2016, 502:29-36. [28] KREUER K D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells[J]. Journal of Membrane Science, 2001, 185(1):29-39. [29] 张宏伟, 沈培康. 燃料电池聚合物电解质膜的研究进展[J]. 中国科学(化学), 2012, 42(7):954-982. ZHANG Hongwei, SHEN Peikang. Progress of polymer electrolyte membranes for fuel cells[J]. Scientia Sinica Chimica, 2012, 42(7):954-982. [30] LI N, GUIVER M D. Ion transport by nanochannels in ion-containing aromatic copolymers[J]. Macromolecules, 2014, 47(7):2175-2198. [31] YANG Y, SHI Z, HOLDCROFT S. Synthesis of sulfonated polysulfone-block-PVDF copolymers:enhancement of proton conductivity in low ion exchange capacity membranes[J]. Macromolecules, 2004, 37(5):1678-1681. [32] LI N, WANG C, LEE S Y, et al. Enhancement of proton transport by nanochannels in poly(arylene ether sulfone)s[J]. Angewandte Chemie:International Edition, 2011, 50(39):9158-9161. [33] WEIBER E A, TAKAMUKU S, JANNASCH P. Highly proton conducting electrolyte membranes based on poly(arylene sulfone)s with tetrasulfonated segments[J]. Macromolecules, 2013, 46(9):3476-3485. [34] 李雪峰, 郭梅梅, 刘佰军, 等. SPEEK/PES嵌段聚合物的制备及性能[J]. 高等学校化学学报, 2011, 32(5):1022-1024. LI Xuefeng, GUO Meimei, LIU Baijun, et al. Synthesis and properties of SPEEK/PES block polymers[J]. Chemical Journal of Chinese Universities, 2011, 32(5):1022-1024. [35] HSU C Y, KUO M H, KUO P L. Preparation, characterization, and properties of poly(styrene-b-sulfonatedisoprene)s membranes for proton exchange membrane fuel cells(PEMFCs)[J]. Journal of Membrane Science, 2015, 484:146-153. [36] ERDOGANA T, UNVERENA E E, INANA T Y, et al. Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell[J]. Journal of Membrane Science, 2009, 344(1-2):172-181. [37] BAE B, HOSHI T, MIYATAKE K, et al. Sulfonated block poly(arylene ether sulfone) membranes for fuel cell applications via oligomeric sulfonation[J]. Macromolecules, 2011, 44(10):3884-3892. [38] MIYAHARA T, HAYANO T, MATSUNO S, et al. Sulfonated polybenzophenone/poly(arylene ether) block copolymer membranes for fuel cell applications[J]. ACS Applied Materials & Interfaces, 2012, 4(6):2881-2884. [39] OH K, KETPANG K, KIM H, et al. Synthesis of sulfonated poly(arylene ether ketone) block copolymers for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2016, 507:135-142. [40] KANG K, KIM D. Comparison of proton conducting polymer electrolyte membranes prepared from multi-block and random copolymers based on poly(arylene ether ketone)[J]. Journal of Power Sources, 2015, 281:146-157. [41] KANG K, KWON B, CHOI S W, et al. Properties and morphology study of proton exchange membranes fabricated from the pendant sulfonated poly(arylene ether ketone) copolymers composed of hydrophobic and hydrophilic multi-blocks for fuel cell[J]. Internastional Journal of Hydrogen Energy, 2015, 40(46):16443-16456. [42] CHOPADE S A, SO S, HILLMYER M A, et al. Anhydrous proton conducting polymer electrolyte membranes via polymerizationinduced microphase separation[J]. ACS Applied Materials & Interfaces, 2016, 8(9):6200-6210. [43] MIRANDA D F, VERSEK C, TUOMINEN M T, et al. Cross-linked block copolymer/ionic liquid self-assembled blends for polymer gel electrolytes with high ionic conductivity and mechanical strength[J]. Macromolecules, 2013, 46(23):9313-9323. [44] KIM S Y, YOON E, JOO T, et al. Morphology and conductivity in ionic liquid incorporated sulfonated block copolymers[J]. Macromolecules, 2011, 44(13):5289-5298. [45] KIM S Y, KIM S, PARK M J. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions[J]. Nature Communication, 2010, 1(7):88-94. [46] VIRGILI J M, HOARFROST M L, SEGALMAN R A. Effect of an ionic liquid solvent on the phase behavior of block copolymers[J]. Macromolecules, 2013, 43(12):5417-5423. [47] HOARFROST M L, TYAGI M S, SEGALMAN R A, et al. Effect of confinement on proton transport mechanisms in block copolymer/ionic liquid membranes[J]. Macromolecules, 2012, 45(7):3112-3120. [48] ZHANG S G, ZHANG Q H, ZHANG Y, et al. Beyond solvents and electrolytes:ionic liquids based advanced functional materials[J]. Progress in Materials Science, 2016, 77:80-124. |
[1] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[2] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[3] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[4] | HUA Qucheng, DUAN Qinghua. Research progress of ionic liquid as extreme pressure and anti-wear agent [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 331-339. |
[5] | CHEN Yu, LIU Chong, QIU Yuhui, BI Zixin, MU Tiancheng. Ionic liquids and deep eutectic solvents for green recycle of spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 485-496. |
[6] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[7] | SHAN Qingwen, ZHANG Juan, WANG Yajuan, LIU Wenqiang. Synthesis of polymeric ionic liquid and its performance on adsorption desulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4571-4579. |
[8] | RUAN Jiawei, YE Xiangzhu, CHEN Lifang, QI Zhiwen. Recent progress in synthesis of organic carbonates from carbon dioxide catalyzed by ionic liquids and deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1176-1186. |
[9] | NI Qing, LAI Jinbo, PENG Dongyue, GUAN Cuishi, LONG Jun. Progress in extraction separation of hydrocarbons by ionic liquids [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-627. |
[10] | LU Zeping, PEI Xinhua, XUE Yu, ZHANG Xiaoguang, HU Yi. Chemical modification of porcine pancreatic lipase with betaine ionic liquid to improve its enzymatic properties [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6045-6052. |
[11] | LI Ting, DU Shaohui, CUI Jinfeng, WANG Yanghui, LI Hulin, GUO Runlan, WANG Peng, WANG Zhenjun, GUO Junhong, YANG Baoping. Preparation and properties of waterborne polyurethane paper sizing agents with phosphorus-boron hybrid prepolymer blocks [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5549-5557. |
[12] | LUO Laiming, CHEN Si’an, WANG Haining, ZHANG Jin, LU Shanfu, XIANG Yan. Simulation and optimization of large-scale (200cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4975-4985. |
[13] | CHEN Yaju, REN Qinggang, ZHOU Xiantai, JI Hongbing. Recent advances in porous organic polymers for the synthesis of cyclic carbonates from carbon dioxide [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3564-3583. |
[14] | BAI Ruibing, WANG Junfeng, WANG Daoguang, ZHANG Yanqiang. Research progress of ionic liquid-based extraction separation of lithium from brine [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3224-3238. |
[15] | LIU Zheng, LIU Ran, HUA Er, JI Jianlong. Water effects on physicochemical properties of protic ionic liquid with N-hexylamine as cation and bis(trifluoromethylsulfonyl) imide as anion [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2270-2277. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 378
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 398
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |