Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 6045-6052.DOI: 10.16085/j.issn.1000-6613.2022-0210
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
LU Zeping(), PEI Xinhua, XUE Yu, ZHANG Xiaoguang, HU Yi()
Received:
2022-02-09
Revised:
2022-03-18
Online:
2022-11-28
Published:
2022-11-25
Contact:
HU Yi
通讯作者:
胡燚
作者简介:
鲁泽平(1999—),男,硕士研究生,研究方向为生物催化。E-mail:416169187@qq.com。
基金资助:
CLC Number:
LU Zeping, PEI Xinhua, XUE Yu, ZHANG Xiaoguang, HU Yi. Chemical modification of porcine pancreatic lipase with betaine ionic liquid to improve its enzymatic properties[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6045-6052.
鲁泽平, 裴新华, 薛誉, 张晓光, 胡燚. 甜菜碱类离子液体化学修饰猪胰脂肪酶提升其酶学性能[J]. 化工进展, 2022, 41(11): 6045-6052.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0210
酶 | 修饰度/% | 酶活/U·mg-1 | 相对酶活/% |
---|---|---|---|
PPL | 8.75 | 100 | |
[BetaineC4][Cl]-PPL | 49.85 | 19.23 | 219.77 |
[BetaineC8][Cl]-PPL | 49.39 | 20.34 | 232.46 |
[BetaineC12][Cl]- PPL | 45.92 | 21.52 | 245.94 |
[BetaineC16][Cl]- PPL | 40.81 | 29.23 | 334.06 |
[BetaineC16][BF4]- PPL | 40.74 | 28.71 | 328.11 |
[BetaineC16][H2PO4]- PPL | 41.36 | 30.12 | 344.23 |
SarcosineC16- PPL | 40.87 | 10.27 | 117.37 |
酶 | 修饰度/% | 酶活/U·mg-1 | 相对酶活/% |
---|---|---|---|
PPL | 8.75 | 100 | |
[BetaineC4][Cl]-PPL | 49.85 | 19.23 | 219.77 |
[BetaineC8][Cl]-PPL | 49.39 | 20.34 | 232.46 |
[BetaineC12][Cl]- PPL | 45.92 | 21.52 | 245.94 |
[BetaineC16][Cl]- PPL | 40.81 | 29.23 | 334.06 |
[BetaineC16][BF4]- PPL | 40.74 | 28.71 | 328.11 |
[BetaineC16][H2PO4]- PPL | 41.36 | 30.12 | 344.23 |
SarcosineC16- PPL | 40.87 | 10.27 | 117.37 |
酶 | Km/mg·mL-1 | Vmax/U·mg-1 |
---|---|---|
PPL | 20.32 | 0.459 |
[BetaineC4][Cl]-PPL | 19.11 | 0.501 |
[BetaineC8][Cl]-PPL | 18.62 | 0.611 |
[BetaineC12][Cl]-PPL | 15.62 | 0.736 |
[BetaineC16][Cl]-PPL | 12.95 | 0.869 |
[BetaineC16][BF4]-PPL | 12.36 | 0.860 |
[BetaineC16][H2PO4]-PPL | 13.31 | 0.874 |
酶 | Km/mg·mL-1 | Vmax/U·mg-1 |
---|---|---|
PPL | 20.32 | 0.459 |
[BetaineC4][Cl]-PPL | 19.11 | 0.501 |
[BetaineC8][Cl]-PPL | 18.62 | 0.611 |
[BetaineC12][Cl]-PPL | 15.62 | 0.736 |
[BetaineC16][Cl]-PPL | 12.95 | 0.869 |
[BetaineC16][BF4]-PPL | 12.36 | 0.860 |
[BetaineC16][H2PO4]-PPL | 13.31 | 0.874 |
酶 | C总/% | CR/% | CS/% | eeS/% | eeR/% | E |
---|---|---|---|---|---|---|
PPL | 29.4 | 49.2 | 15.8 | 24.1 | 62.2 | 5.5 |
[BetaineC4][Cl]-PPL | 36.2 | 50.5 | 13.2 | 28.9 | 61.7 | 5.9 |
[BetaineC8][Cl]-PPL | 43.5 | 39.5 | 11.25 | 29.2 | 60.3 | 6.3 |
[BetaineC12][Cl]-PPL | 55.7 | 53.2 | 12.9 | 26.9 | 62.9 | 10.3 |
[BetaineC16][Cl]-PPL | 62.0 | 44.6 | 12.7 | 30.4 | 59.6 | 15.8 |
[BetaineC16][BF4]-PPL | 60.7 | 43.9 | 11.5 | 28.7 | 61.9 | 15.4 |
[BetaineC16][H2PO4]-PPL | 64.5 | 44.3 | 12.5 | 36.4 | 54.5 | 16.3 |
酶 | C总/% | CR/% | CS/% | eeS/% | eeR/% | E |
---|---|---|---|---|---|---|
PPL | 29.4 | 49.2 | 15.8 | 24.1 | 62.2 | 5.5 |
[BetaineC4][Cl]-PPL | 36.2 | 50.5 | 13.2 | 28.9 | 61.7 | 5.9 |
[BetaineC8][Cl]-PPL | 43.5 | 39.5 | 11.25 | 29.2 | 60.3 | 6.3 |
[BetaineC12][Cl]-PPL | 55.7 | 53.2 | 12.9 | 26.9 | 62.9 | 10.3 |
[BetaineC16][Cl]-PPL | 62.0 | 44.6 | 12.7 | 30.4 | 59.6 | 15.8 |
[BetaineC16][BF4]-PPL | 60.7 | 43.9 | 11.5 | 28.7 | 61.9 | 15.4 |
[BetaineC16][H2PO4]-PPL | 64.5 | 44.3 | 12.5 | 36.4 | 54.5 | 16.3 |
酶 | α-螺旋 /% | β-折叠 /% | β-转角 /% | 无规卷曲 /% |
---|---|---|---|---|
PPL | 22.9 | 27.4 | 18.9 | 30.5 |
[BetaineC4][Cl]-PPL | 21.2 | 28.6 | 20.6 | 28.1 |
[BetaineC8][Cl]-PPL | 20.2 | 29.2 | 20.4 | 28.6 |
[BetaineC12][Cl]-PPL | 17.2 | 29.8 | 21.1 | 27.1 |
[BetaineC16][Cl]- PPL | 14.5 | 31.3 | 21.8 | 24.6 |
[BetaineC16][BF4]-PPL | 14.3 | 30.1 | 21.7 | 23.3 |
[BetaineC16][H2PO4]-PPL | 15.1 | 31.6 | 22.8 | 24.9 |
酶 | α-螺旋 /% | β-折叠 /% | β-转角 /% | 无规卷曲 /% |
---|---|---|---|---|
PPL | 22.9 | 27.4 | 18.9 | 30.5 |
[BetaineC4][Cl]-PPL | 21.2 | 28.6 | 20.6 | 28.1 |
[BetaineC8][Cl]-PPL | 20.2 | 29.2 | 20.4 | 28.6 |
[BetaineC12][Cl]-PPL | 17.2 | 29.8 | 21.1 | 27.1 |
[BetaineC16][Cl]- PPL | 14.5 | 31.3 | 21.8 | 24.6 |
[BetaineC16][BF4]-PPL | 14.3 | 30.1 | 21.7 | 23.3 |
[BetaineC16][H2PO4]-PPL | 15.1 | 31.6 | 22.8 | 24.9 |
1 | Alba DÍAZ-RODRÍGUEZ, DAVIS Benjamin G. Chemical modification in the creation of novel biocatalysts[J]. Current Opinion in Chemical Biology, 2011, 15(2): 211-219. |
2 | ZHANG Yifei, GE Jun, LIU Zheng. Enhanced activity of immobilized or chemically modified enzymes[J]. ACS Catalysis, 2015, 5(8): 4503-4513. |
3 | RODRIGUES R, BERENGUER-MURCIA A, FERNANDEZ-LAFUENTE R. ChemInform abstract: coupling chemical modification and immobilization to improve the catalytic performance of enzymes[J]. Advanced Synthesis & Catalysis, 2011, 353(13): 2216-2238. |
4 | LIU Jianzhong, WANG Min. Improvement of activity and stability of chloroperoxidase by chemical modification[J]. BMC Biotechnology, 2007, 7: 23. |
5 | JAYAWARDENA Menuk B, Lachlan H YEE, POLJAK Anne, et al. Enhancement of lipase stability and productivity through chemical modification and its application to latex-based polymer emulsions[J]. Process Biochemistry, 2017, 57: 131-140. |
6 | ITOH Toshiyuki. Ionic liquids as tool to improve enzymatic organic synthesis[J]. Chemical Reviews, 2017, 117(15): 10567-10607. |
7 | DE GAETANO Yannick, MOHAMADOU Aminou, BOUDESOCQUE Stéphanie, et al. Ionic liquids derived from esters of Glycine Betaine: synthesis and characterization[J]. Journal of Molecular Liquids, 2015, 207: 60-66. |
8 | ITOH Toshiyuki. Activation of lipase-catalyzed reactions using ionic liquids for organic synthesis[J]. Advances in Biochemical Engineering/Biotechnology, 2019, 168: 79-104. |
9 | KAAR Joel L, JESIONOWSKI Anita M, BERBERICH Jason A, et al. Impact of ionic liquid physical properties on lipase activity and stability[J]. Journal of the American Chemical Society, 2003, 125(14): 4125-4131. |
10 | LAU R Madeira, VAN RANTWIJK F, SEDDON K R, et al. Lipase-catalyzed reactions in ionic liquids[J]. Organic Letters, 2000, 2(26): 4189-4191. |
11 | ZHAO Hua. Protein stabilization and enzyme activation in ionic liquids: specific ion effects[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(1): 25-50. |
12 | KHAN Nishat R, RATHOD Virendra K. Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review[J]. Process Biochemistry, 2015, 50(11): 1793-1806. |
13 | PERNAK Juliusz, NIEMCZAK Michał, Łukasz CHRZANOWSKI, et al. Betaine and carnitine derivatives as herbicidal ionic liquids[J]. Chemistry, 2016, 22(34): 12012-12021. |
14 | NIEMCZAK Michał, Łukasz CHRZANOWSKI, PRACZYK Tadeusz, et al. Biodegradable herbicidal ionic liquids based on synthetic auxins and analogues of betaine[J]. New Journal of Chemistry, 2017, 41(16): 8066-8077. |
15 | ZHU Anlian, LIU Ruixia, DU Chunyan, et al. Betainium-based ionic liquids catalyzed multicomponent Hantzsch reactions for the efficient synthesis of acridinediones[J]. RSC Advances, 2017, 7(11): 6679-6684. |
16 | 徐超, 薛誉, 陈虹月, 等. 手性脯氨酸类离子液体化学修饰猪胰脂肪酶催化性能研究[J]. 化工学报, 2019, 70(6): 2221-2228. |
XU Chao, XUE Yu, CHEN Hongyue, et al. Study on catalytic properties of porcine pancreatic lipase modified by chiral proline ionic liquids[J]. CIESC Journal, 2019, 70(6): 2221-2228. | |
17 | JIA Ru, HU Yi, LIU Luo, et al. Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids[J]. Organic & Biomolecular Chemistry, 2013, 11(41): 7192-7198. |
18 | JIA Ru, HU Yi, LIU Luo, et al. Enhancing catalytic performance of porcine pancreatic lipase by covalent modification using functional ionic liquids[J]. ACS Catalysis, 2013, 3(9): 1976-1983. |
19 | XU Chao, SUO Hongbo, XUE Yu, et al. Experimental and theoretical evidence of enhanced catalytic performance of lipase B from Candida antarctica acquired by the chemical modification with amino acid ionic liquids[J]. Molecular Catalysis, 2021, 501: 111355. |
20 | ZOU Bin, HU Yi, JIANG Ling, et al. Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via ionic bonding and cross-linking method[J]. Industrial & Engineering Chemistry Research, 2013, 52(8): 2844-2851. |
21 | BEKHOUCHE Mourad, Bastien DOUMÈCHE, BLUM Loïc J. Chemical modifications by ionic liquid-inspired cations improve the activity and the stability of formate dehydrogenase in[MMIm][Me2PO4 [J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 65(1/2/3/4): 73-78. |
22 | YANG Zhen. Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis[J]. Journal of Biotechnology, 2009, 144(1): 12-22. |
23 | HUA Zhao. Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(10): 1723. |
24 | ZHAO Hua, OLUBAJO Olarongbe, SONG Zhiyan, et al. Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions[J]. Bioorganic Chemistry, 2006, 34(1): 15-25. |
25 | WAN Xiaomei, XIANG Xinran, TANG Susu, et al. Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups[J]. Colloids and Surfaces B, Biointerfaces, 2017, 160: 416-422. |
26 | DAHANAYAKE Jayangika N, SHAHRYARI Elaheh, ROBERTS Kirsten M, et al. Protein solvent shell structure provides rapid analysis of hydration dynamics[J]. Journal of Chemical Information and Modeling, 2019, 59(5): 2407-2422. |
27 | GROCHULSKI P, LI Y, SCHRAG J D, et al. Insights into interfacial activation from an open structure of Candida rugosa lipase[J]. The Journal of Biological Chemistry, 1993, 268(17): 12843-12847. |
28 | 张川, 张鲁嘉, 张洋, 等. 基于分子模拟的离子液体修饰Porcine Pancreas脂肪酶催化性能和稳定性的相关研究[J]. 化学学报, 2016, 74(1): 74-80. |
ZHANG C, ZHANG L J, ZHANG Y, et al. Study on the stability and enzymatic property improvement of porcine pancreas lipase modified by ionic liquids using molecular simulation[J]. Acta Chimica Sinica, 2016, 74(1): 74-80. | |
29 | BEKHOUCHE Mourad, BLUM Loïc J, Bastien DOUMÈCHE. Ionic liquid-inspired cations covalently bound to formate dehydrogenase improve its stability and activity in ionic liquids[J]. ChemCatChem, 2011, 3(5): 875-882. |
30 | TINOCO Raunel, Rafael VAZQUEZ-DUHALT. Chemical modification of cytochrome C improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons[J]. Enzyme and Microbial Technology, 1998, 22(1): 8-12. |
31 | LADOKHIN Alexey S, JAYASINGHE Sajith, WHITE Stephen H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? [J]. Analytical Biochemistry, 2000, 285(2): 235-245. |
32 | XIANG Xinran, DING Song, SUO Hongbo, et al. Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization[J]. Carbohydrate Polymers, 2018, 182: 245-253. |
33 | VIRGEN-ORTÍZ Jose J, TACIAS-PASCACIO Veymar G, HIRATA Daniela B, et al. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports[J]. Enzyme and Microbial Technology, 2017, 96: 30-35. |
34 | ADAK Sunita, DATTA Sougata, BHATTACHARYA Santanu, et al. Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase[J]. International Journal of Biological Macromolecules, 2015, 81: 560-567. |
[1] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[2] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[3] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[4] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[5] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[6] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[7] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[8] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[9] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[10] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[11] | LI Yun, CUI Nan, XIONG Xingxing, HUANG Zhiyuan, WANG Dongliang, XU Dan, LI Jun, LI Zebing. Influence of rare earth element Er(Ⅲ) on performance of short-cut nitrification and its inhibition kinetics [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1659-1668. |
[12] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[13] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[14] | KANG Yu, GOU Zenian. Kinetics studies of carbon gas hydrate separation in the presence of amino acids and DTAC [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5067-5075. |
[15] | FAN Jiahao, ZHANG Yang, FAN Binqiang, ZHANG Hedong, ZHENG Shili, ZOU Xing. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |