Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1659-1668.DOI: 10.16085/j.issn.1000-6613.2022-1005
• Resources and environmental engineering • Previous Articles
LI Yun1,2(), CUI Nan2, XIONG Xingxing2, HUANG Zhiyuan2, WANG Dongliang1,2, XU Dan2, LI Jun3, LI Zebing2()
Received:
2022-05-30
Revised:
2022-06-29
Online:
2023-04-10
Published:
2023-03-15
Contact:
LI Zebing
李芸1,2(), 崔楠2, 熊星星2, 黄志远2, 王东亮1,2, 许丹2, 李军3, 李泽兵2()
通讯作者:
李泽兵
作者简介:
李芸(1985—),男,博士,讲师。研究方向为水处理理论与技术。E-mail:liyun_jps@163.com。
基金资助:
CLC Number:
LI Yun, CUI Nan, XIONG Xingxing, HUANG Zhiyuan, WANG Dongliang, XU Dan, LI Jun, LI Zebing. Influence of rare earth element Er(Ⅲ) on performance of short-cut nitrification and its inhibition kinetics[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1659-1668.
李芸, 崔楠, 熊星星, 黄志远, 王东亮, 许丹, 李军, 李泽兵. 稀土Er(Ⅲ)对短程硝化性能的影响及其抑制动力学特性[J]. 化工进展, 2023, 42(3): 1659-1668.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1005
Er(Ⅲ)浓度 /mg·L-1 | 元素质量分数/% | |||
---|---|---|---|---|
C | O | Er | 其他 | |
0 | 33.88 | 33.66 | 0 | 32.46 |
10 | 36.85 | 38.02 | 1.56 | 23.57 |
60 | 30.58 | 26.16 | 22.46 | 20.80 |
80 | 21.25 | 26.69 | 29.03 | 23.03 |
Er(Ⅲ)浓度 /mg·L-1 | 元素质量分数/% | |||
---|---|---|---|---|
C | O | Er | 其他 | |
0 | 33.88 | 33.66 | 0 | 32.46 |
10 | 36.85 | 38.02 | 1.56 | 23.57 |
60 | 30.58 | 26.16 | 22.46 | 20.80 |
80 | 21.25 | 26.69 | 29.03 | 23.03 |
浓度范围/mg·L-1 | Vadivelu模型 | Hellinga模型 | |||||
---|---|---|---|---|---|---|---|
R2 | qmax | K | a | R2 | qmax | KI | |
0~120 | 0.9613 | 6.23 | 7.98×10-28 | 14.89 | 0.6805 | 7.96 | 35.54 |
0~60 | 0.7054 | 7.75 | 0.005 | 1.22 | 0.9195 | 7.21 | 124.11 |
60~120 | 0.9938 | 4.35×107 | 9.20×10-10 | 8.98 | 0.3299 | 1.03×105 | 0.001 |
浓度范围/mg·L-1 | Hill模型 | Michaelis-Menten模型 | |||||
R2 | qmax | K | n | R2 | qmax | K | |
0~120 | 0.8912 | 8.75 | 65.23 | 3.25 | 0.8740 | 1.01×1013 | 1.54×1014 |
0~60 | 0.9879 | 2.59 | 15.66 | 1.43 | 0.9920 | 2.95 | 17.70 |
60~120 | 0.9999 | 7.15 | 62.27 | 19.21 | 0.6106 | 96.94 | 1360.32 |
浓度范围/mg·L-1 | Vadivelu模型 | Hellinga模型 | |||||
---|---|---|---|---|---|---|---|
R2 | qmax | K | a | R2 | qmax | KI | |
0~120 | 0.9613 | 6.23 | 7.98×10-28 | 14.89 | 0.6805 | 7.96 | 35.54 |
0~60 | 0.7054 | 7.75 | 0.005 | 1.22 | 0.9195 | 7.21 | 124.11 |
60~120 | 0.9938 | 4.35×107 | 9.20×10-10 | 8.98 | 0.3299 | 1.03×105 | 0.001 |
浓度范围/mg·L-1 | Hill模型 | Michaelis-Menten模型 | |||||
R2 | qmax | K | n | R2 | qmax | K | |
0~120 | 0.8912 | 8.75 | 65.23 | 3.25 | 0.8740 | 1.01×1013 | 1.54×1014 |
0~60 | 0.9879 | 2.59 | 15.66 | 1.43 | 0.9920 | 2.95 | 17.70 |
60~120 | 0.9999 | 7.15 | 62.27 | 19.21 | 0.6106 | 96.94 | 1360.32 |
浓度范围 /mg·L-1 | Hill模型(胞外) | Hill模型(胞内) | ||||||
---|---|---|---|---|---|---|---|---|
R2 | qmax | K | n | R2 | qmax | K | n | |
0~120 | 0.9105 | 7.45 | 5.95 | 20.51 | 0.9136 | 9.34 | 0.49 | 5.37 |
0~60 | 0.9755 | 2.99 | 1.93 | 0.86 | 0.9977 | 3.66 | 0.34 | 1.85 |
60~120 | 0.9999 | 7.15 | 5.94 | 57.08 | 0.9999 | 7.15 | 0.47 | 32.50 |
浓度范围 /mg·L-1 | Hill模型(胞外) | Hill模型(胞内) | ||||||
---|---|---|---|---|---|---|---|---|
R2 | qmax | K | n | R2 | qmax | K | n | |
0~120 | 0.9105 | 7.45 | 5.95 | 20.51 | 0.9136 | 9.34 | 0.49 | 5.37 |
0~60 | 0.9755 | 2.99 | 1.93 | 0.86 | 0.9977 | 3.66 | 0.34 | 1.85 |
60~120 | 0.9999 | 7.15 | 5.94 | 57.08 | 0.9999 | 7.15 | 0.47 | 32.50 |
1 | CHEN Z, LI Z, CHEN J, et al. Recent advances in selective separation technologies of rare earth elements: a review[J]. Journal of Environmental Chemical Engineering, 2021, 10(1): 107104. |
2 | 郜鹏畅, 区晓琳, 陈志彪. 闽西离子吸附型稀土开采对土壤及地表水的影响[J]. 稀土, 2022, 43(5): 1-9. |
GAO Pengchang, QU Xiaolin, CHEN Zhibiao. Influence of ion adsorption rare earth mining on soil and surface water in western Fujian[J]. Chinese Rare Earths, 2022, 43(5): 1-9. | |
3 | ZHANG D C, SU H, ANTWI P, et al. High-rate partial-nitritation and efficient nitrifying bacteria enrichment/out-selection via pH-DO controls: efficiency, kinetics, and microbial community dynamics[J]. Science of the Total Environment, 2019, 692: 741-755. |
4 | YANG Shuai, YANG Fenglin. Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor[J]. Journal of Hazardous Materials, 2011, 195: 318-323. |
5 | ANTWI P, ZHANG D, LUO W, et al. Performance, microbial community evolution and neural network modeling of single-stage nitrogen removal by partial-nitritation/anammox process[J]. Bioresource Technology, 2019, 284: 359-372. |
6 | 贺亮, 施万胜, 赵明星, 等.基于分点进水的垃圾渗滤液短程硝化反硝化脱氮性能[J]. 环境工程学报, 2021, 15(5): 1753-1762. |
HE Liang, SHI Wansheng, ZHAO Mingxing, et al. Nitrogen removal performance of short-cut nitrification and denitrification process based on step feeding strategy for landfill leachate treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1753-1762. | |
7 | WU Lina, LIANG Dawei, XU Yingxing, et al. A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation[J]. Bioresource Technology, 2016, 212: 296-301. |
8 | 聂春芬, 王应军, 马星宇, 等. 固定化活性污泥实现短程硝化反硝化处理畜禽废水[J]. 环境工程学报, 2013, 7(5): 1807-1812. |
NIE Chunfen, WANG Yingjun, MA Xingyu, et al. Immobilized activated sludge to achieve shortcut nitrification-denitrification treatment of livestock wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1807-1812. | |
9 | SANJAYA E H, CHEN Y, GUO Y, et al. The performance of simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) method in the treatment of digested effluent of fish processing wastewater[J]. Bioresource Technology, 2022, 346: 126622. |
10 | ZHENG Xiong, ZHOU Weinan, WAN Rui, et al. Increasing municipal wastewater BNR by using the preferred carbon source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification[J]. Chemical Engineering Journal, 2018, 344: 556-564. |
11 | GAO Ruitao, PENG Yongzhen, LI Jianwei, et al. Improving performance and efficiency of partial anammox by coupling partial nitrification and partial denitrification (PN/A-PD/A) to treat municipal sewage in a step-feed reactor[J]. Bioresource Technology, 2021, 341: 125804. |
12 | YE Liu, PENG Chengyao, TANG Bing, et al. Determination effect of influent salinity and inhibition time on partial nitrification in a sequencing batch reactor treating saline sewage[J]. Desalination, 2009, 246(1/2/3): 556-566. |
13 | BASSIN J P, DEZOTTI M, SANT’ANNA Jr G L. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor[J]. Journal of Hazardous Materials, 2011, 185(1): 242-248. |
14 | 李嘉懿, 杜青平, 刘嵩, 等. 有机负荷对垃圾沥滤液短程硝化系统影响及微生物相探析[J]. 环境科学学报, 2018, 38(6): 2334-2341. |
LI Jiayi, DU Qingping, LIU Song, et al. Effect of organic loading on partial nitrification system for the treatment of fresh incineration leachate and analysis of microbial phases[J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2334-2341. | |
15 | YUAN Yao, ZHOU Zhen, JIANG Jie, et al. Partial nitrification performance and microbial community evolution in the membrane bioreactor for saline stream treatment[J]. Bioresource Technology, 2021, 320: 124419. |
16 | 黄书昌, 朱易春, 章璋, 等. 声能密度对短程硝化启动及氨氮去除动力学的影响[J]. 化工进展, 2019, 38(9): 4335-4341. |
HUANG Shuchang, ZHU Yichun, ZHANG Zhang, et al. Effect of ultrasonic density on partial nitrification and ammonia nitrogen removal kinetics[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4335-4341. | |
17 | ZHANG L, FAN J, NGUYEN H N, et al. Effect of cadmium on the performance of partial nitrification using sequencing batch reactor[J]. Chemosphere, 2019, 222: 913-922. |
18 | 刘滔, 池勇志, 付海娟, 等. Zn(Ⅱ)、硫化物和苯酚对短程硝化污泥活性的抑制[J]. 环境工程学报, 2017, 11(10): 5341-5350. |
LIU Tao, CHI Yongzhi, FU Haijuan, et al. Inhibition of partial nitritation activity by Zn(Ⅱ), sulfide and phenol in activated sludge[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5341-5350. | |
19 | JEONG D, BAE H. Insight into functionally active bacteria in nitrification following Na+ and Mg2+ exposure based on 16S rDNA and 16S rRNA sequencing[J]. Science of the Total Environment, 2021, 758: 143592. |
20 | 王志高, 王金荣, 彭文博, 等. 膜分离技术处理离子型稀土矿稀土开采废水[J]. 稀土, 2017, 38(1): 102-107. |
WANG Zhigao, WANG Jinrong, PENG Wenbo, et al. Membrane separation technology to treat ionic rare earth ore rare earth mining wastewater[J]. Chinese Rare Earths, 2017, 38(1): 102-107. | |
21 | SU Hao, ZHANG Dachao, ANTWI P, et al. Exploring potential impact (s) of cerium in mining wastewater on the performance of partial-nitrification process and nitrogen conversion microflora[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111796. |
22 | 赖城, 周豪, 张大超, 等. 重稀土元素钇对短程反硝化工艺的影响[J]. 中国环境科学, 2021, 41(7): 3221-3228. |
LAI Cheng, ZHOU Hao, ZHANG Dachao, et al. Effect of heavy rare earth element yttrium on partial denitrification process: performance, kinetics and bacterial activity[J]. China Environmental Science, 2021, 41(7): 3221-3228. | |
23 | VADIVELU V M, YUAN Z G, FUX C, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched nitrobacter culture[J]. Environmental Science &Technology, 2006, 40(14): 4442-4448. |
24 | HELLINGA C, VAN LOOSDRECHT M C M, HEIJNEN J J. Model based design of a novel process for nitrogen removal from concentrated flows[J]. Mathematical and Computer Modelling of Dynamical Systems, 1999, 5(4): 351-371. |
25 | 孙琪, 赵白航, 范飒, 等. 重金属Ni(Ⅱ)对厌氧氨氧化脱氮性能的影响及其动力学特征变化[J]. 环境科学, 2020, 41(06): 2779-2786. |
SUN Qi, ZHAO Baihang, FAN Sa, et al. Effect of Ni(Ⅱ) on anaerobic ammonium oxidation and changes in kinetics[J].Environmental Science, 2020, 41(6): 2779-2786. | |
26 | YANG Lijuan, Guanjun NAN, MENG Xianxin, et al. Study on the interaction between lovastatin and three digestive enzymes and the effect of naringin and vitamin C on it by spectroscopy and docking methods[J]. International Journal of Biological Macromolecules, 2020, 155: 1440-1449. |
27 | CHANG S I, REINFELDER J R. Bioaccumulation, subcellular distribution, and trophic transfer of copper in a coastal marine diatom[J]. Environmental Science &Technology, 2000, 34(23): 4931-4935. |
28 | SU Hao, ZHANG Dachao, ANTWI P, et al. Effects of heavy rare earth element (yttrium) on partial-nitritation process, bacterial activity and structure of responsible microbial communities[J]. Science of the Total Environment, 2020, 705: 135797. |
29 | KHAN A A, GANI A, MASOODI F A, et al. Structural, rheological, antioxidant, and functional properties of β–glucan extracted from edible mushrooms Agaricus bisporus, Pleurotus ostreatus and Coprinus attrimentarius [J]. Bioactive Carbohydrates and Dietary Fibre,2017,11: 67-74. |
30 | FUSTE N P, GUASCH M, GUILLEN P, et al. Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts[J]. Carbohydrate Polymers, 2019, 210: 389-398. |
31 | CORSINO S F, CAPODICI M, TORREGROSSA M, et al. Fate of aerobic granular sludge in the long-term: the role of EPSs on the clogging of granular sludge porosity[J]. Journal of Environmental Management, 2016, 183: 541-550. |
32 | POZNVAK T, BAUTISTA G L, CHAIREZ I, et al. Decomposition of toxic pollutants in landfill leachate by ozone after coagulation treatment[J]. Journal of Hazardous Materials, 2008, 152(3): 1108-1114. |
33 | LEE D J, CHEN Y Y, SHOW K Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation[J]. Biotechnology Advances, 2010, 28(6): 919-934. |
34 | SU H, ZHANG D C, ANTWI P, et al. Adaptation, restoration and collapse of anammox process to La(Ⅲ) stress: performance, microbial community, metabolic function and network analysis[J]. Bioresource Technology, 2021, 325: 124731. |
35 | KOTRBA P, INUI M, YUKAWA H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism[J]. Journal of Bioscience and Bioengineering, 2001, 92(6): 502-517. |
36 | SU H, ZHANG D C, ANTWI P, et al. Unraveling the effects of light rare-earth element (Lanthanum (Ⅲ)) on the efficacy of partial-nitritation process and its responsible functional genera[J]. Chemical Engineering Journal, 2021, 408: 127311. |
37 | YUE Yan, QI Lin, LI Yan, et al. Negative effects of rare earth oxide nanoparticles of La2O3, Nd2O3, and Gd2O3 on the ammonia-oxidizing microorganisms[J]. Journal of Soils and Sediments, 2020, 20(8): 3114-3123. |
[1] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[2] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[3] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[4] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[5] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[6] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[7] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[8] | KANG Yu, GOU Zenian. Kinetics studies of carbon gas hydrate separation in the presence of amino acids and DTAC [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5067-5075. |
[9] | FAN Jiahao, ZHANG Yang, FAN Binqiang, ZHANG Hedong, ZHENG Shili, ZOU Xing. Crystallization kinetics of (NH4)2SO4 in mixed solution of (NH4)2SO4 and Na2SO4 and the influence of Fe/Al/Mn/Cr ions on crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 488-496. |
[10] | CHEN Qiushi, ZHENG Chen, ZHANG Mindi. Numerical simulation of the esterification between chlorophosphate and n-butyl alcohol in microchannel reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 29-35. |
[11] | TIAN Yazhou, HU Yujing, LI Jiyou, REN Jiangyan, WANG Liwei, WANG Xiuli, DING Ying, CHENG Jue, ZHANG Junying. Synthesis, curing kinetics and properties of vanilla alcohol-based epoxy resin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 477-484. |
[12] | FU Chunlong, WANG Songjiang, LI Guozhi. Research progress on combustion technology of coal gasification fine slag [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 516-523. |
[13] | MA Yunfei, WANG Jianbing, JIA Chaomin, XING Yixin, KE Shu, ZHANG Xian. Recent progress of kinetics model and reactor modeling of ozonation [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 556-570. |
[14] | LUO Zhenmin, LIU Lu, SU Bin, SONG Fangzhi. Effect of inert gas on ethylene explosion limit parameters and kinetic characteristics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4653-4661. |
[15] | YUAN Quan, LI Haihong, LIU Haojie. Electric adsorption laws of HNO3-modified activated carbon for different valence ions [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4986-4994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |