化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 456-465.DOI: 10.16085/j.issn.1000-6613.2021-0088
• 资源与环境化工 • 上一篇
收稿日期:
2021-01-14
修回日期:
2021-02-11
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
王军
作者简介:
李泽辉(1998—),男,硕士研究生。E-mail:LI Zehui(), CUI Heng, WANG Jun()
Received:
2021-01-14
Revised:
2021-02-11
Online:
2021-10-25
Published:
2021-11-09
Contact:
WANG Jun
摘要:
以氯化聚氯乙烯(CPVC)超滤膜为基膜,采用单宁酸(TA)和哌嗪(PIP)在CPVC膜表面共沉积后与交联剂均苯三甲酰氯(TMC)进行界面聚合得到PA/TA/CPVC复合纳滤膜,采用扫描电镜(SEM)、原子力显微镜(AFM)、红外光谱及接触角对PA/TA/CPVC复合纳滤膜进行了表征,并探讨了干燥时间、TA/PIP浓度比、TA+PIP总浓度、TMC浓度对PA/TA/CPVC复合纳滤膜微观结构与性能的影响。结果表明,TA/PIP浓度比最佳为7/3,TA/PIP层的最佳干燥时间为20min,PA/TA/CPVC复合纳滤膜的纯水通量随着TA+PIP总浓度的增加和TMC浓度的增加而减少,对PEG1000的截留率均在90%以上。PA/TA/CPVC复合纳滤膜纯水通量最大值为4.5L/(m2 · h · bar),此时PEG1000的截留率达到95.8%。对模拟RB5染料废水的最大通量为4.3L/(m2 · h · bar),此时RB5的截留率为95.4%,对模拟RB5染料废水的稳定性较好。
中图分类号:
李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465.
LI Zehui, CUI Heng, WANG Jun. Preparation of CPVC composite nanofiltration membrane and its application in simulated RB5 dye wastewater treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 456-465.
图11 PA/TA/CPVC复合纳滤膜处理模拟RB5染料废水的稳定性探讨(3种膜干燥时间均为20min,TA/PIP浓度比均为7/3,其中a:TA+PIP总浓度为0.5g/L,TMC浓度为1g/L;b:TA+PIP总浓度为0.6g/L,TMC浓度为1g/L;c:TA+PIP总浓度为0.5g/L, TMC浓度为0.7g/L)
1 | FAN L, MA Y, SU Y, et al. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes [J]. RSC Advances, 2015, 5(130): 107777-107784. |
2 | LI Q, LIAO Z, FANG X, et al. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation [J]. Journal of Membrane Science, 2019, 584: 324-332. |
3 | HE M, SUN H, SUN H, et al. Non-organic solvent prepared nanofiltration composite membrane from natural product tannic acid (TA) and cyclohexane-1,4-diamine (CHD) [J]. Separation and Purification Technology, 2019, 223: 250-259. |
4 | WU H, XIE J, MAO L. One-pot assembly tannic acid-titanium dual network coating for low-pressure nanofiltration membranes [J]. Separation and Purification Technology, 2020, 233: 116051-116059. |
5 | ZHANG H, GONG X Y, LI W X, et al. Thin-film nanocomposite membranes containing tannic acid-Fe3+ modified MoS2 nanosheets with enhanced nanofiltration performance [J]. Journal of Membrane Science, 2020, 616: 118605-118612. |
6 | CHAKRABARTY T, PéREZ-MANRíQUEZ L, NEELAKANDA P, et al. Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes [J]. Separation and Purification Technology, 2017, 184: 188-194. |
7 | XU Y, GUO D, LI T, et al. Manipulating the mussel-inspired co-deposition of tannic acid and amine for fabrication of nanofiltration membranes with an enhanced separation performance [J]. J. Colloid Interface Sci., 2020, 565: 23-34. |
8 | LU W, SHI D, ZHANG H, et al. Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery [J]. Journal of Membrane Science, 2021, 620: 118947-118962. |
9 | REN L, CHEN J, LU Q, et al. Construction of high selectivity and antifouling nanofiltration membrane via incorporating macrocyclic molecules into active layer [J]. Journal of Membrane Science, 2020, 597: 117641-117653. |
10 | ZHANG Z, KANG G, YU H, et al. Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group [J]. Journal of Membrane Science, 2019, 570/571: 403-409. |
11 | WU D, HUANG Y, YU S, et al. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride [J]. Journal of Membrane Science, 2014, 472: 141-153. |
12 | XU X X, ZHOU C L, ZENG B R, et al. Structure and properties of polyamidoamine/polyacrylonitrile composite nanofiltration membrane prepared by interfacial polymerization [J]. Separation and Purification Technology, 2012, 96: 229-236. |
13 | CHENG J, SHI W, ZHANG L, et al. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) [J]. Applied Surface Science, 2017, 416:152-159. |
14 | ZENG Y, WANG L, ZHANG L, et al. An acid resistant nanofiltration membrane prepared from a precursor of poly S(-triazine-amine) by interfacial polymerization [J]. Journal of Membrane Science, 2018, 546:225-233. |
15 | MI Y F, WANG N, QI Q, et al. A loose polyamide nanofiltration membrane prepared by polyether amine interfacial polymerization for dye desalination [J]. Separation and Purification Technology, 2020, 248: 117079-117086. |
16 | DING J, WU H, WU P. Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation [J]. Chemical Engineering Journal, 2020, 396: 125199-125209. |
17 | ZHANG Y, SU Y, PENG J, et al. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride [J]. Journal of Membrane Science, 2013, 429: 235-242. |
18 | WU M, YUAN J, WU H, et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability [J]. Journal of Membrane Science, 2019, 576: 131-141. |
19 | LI M, WU L, ZHANG C, et al. Hydrophilic and antifouling modification of PVDF membranes by one-step assembly of tannic acid and polyvinylpyrrolidone [J]. Applied Surface Science, 2019, 483:967-978. |
20 | XIAO Y, GUO D, LI T, et al. Facile fabrication of superhydrophilic nanofiltration membranes via tannic acid and irons layer-by-layer self-assembly for dye separation [J]. Applied Surface Science, 2020, 515: 146063-146072. |
21 | LIU H, LIU G, ZHANG M, et al. Rapid preparation of Tannic acid (TA) based zwitterionic nanofiltration membrane via a multiple layer-by-layer (mLBL) assembly strategy for enhanced antifouling performance [J]. Separation and Purification Technology, 2020, 253:117519-117529. |
22 | CHEN F, DONG S, WANG Z, et al. Preparation of mixed matrix composite membrane for hydrogen purification by incorporating ZIF-8 nanoparticles modified with tannic acid [J]. International Journal of Hydrogen Energy, 2020, 45(12): 7444-7454. |
23 | XU L, HE Y, FENG X, et al. A comprehensive description of the threshold flux during oil/water emulsion filtration to identify sustainable flux regimes for tannic acid (TA) dip-coated poly(vinylidene fluoride) (PVDF) membranes [J]. Journal of Membrane Science, 2018, 563: 43-53. |
24 | HU W, CUI X, XIANG L, et al. Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection [J]. Journal of Colloid and Interface Science, 2020, 560: 177-185. |
25 | KIM H J, KIM D G, YOON H, et al. Polyphenol/FeⅢ complex coated membranes having multifunctional properties prepared by a one-step fast assembly [J]. Advanced Materials Interfaces, 2015, 2(14): 1500298-1500305. |
26 | CHEN S, XIE Y, XIAO T, et al. Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface [J]. Chemical Engineering Journal, 2018, 337: 122-132. |
27 | LIM M Y, CHOI Y S, KIM J, et al. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine [J]. Journal of Membrane Science, 2017, 521: 1-9. |
28 | LIN C E, ZHOU M Y, HUNG W S, et al. Ultrathin nanofilm with tailored pore size fabricated by metal-phenolic network for precise and rapid molecular separation [J]. Separation and Purification Technology, 2018, 207: 435-442. |
29 | LI Q, LIAO Z, FANG X, et al. Tannic acid assisted interfacial polymerization based loose thin-film composite NF membrane for dye/salt separation [J]. Desalination, 2020, 479: 114343-114352. |
30 | LI T, XIAO Y, GUO D, et al. In-situ coating TiO2 surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance [J]. Journal of Colloid and Interface Science, 2020, 572: 114-121. |
31 | JIANG C, TIAN L, ZHAI Z, et al. Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration [J]. Journal of Membrane Science, 2019, 589:117244-117253. |
32 | ZHANG N, HUANG Z, YANG N, et al. Nanofiltration membrane via EGCG-PEI co-deposition followed by cross-linking on microporous PTFE substrates for desalination [J]. Separation and Purification Technology, 2020, 232: 115964-115973. |
33 | YANG Y, LI Y, LI Q, et al. Rapid co-deposition of graphene oxide incorporated metal-phenolic network/piperazine followed by crosslinking for high flux nanofiltration membranes [J]. Journal of Membrane Science, 2019, 588: 117203-117212. |
34 | ZHANG H, BIN L, PAN J, et al. Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt [J]. Journal of Membrane Science, 2017, 539: 128-137. |
35 | LI Y, SU Y, LI J, et al. Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine [J]. Journal of Membrane Science, 2015, 476: 10-19. |
36 | ANG M B M Y, JI Y L, HUANG S H, et al. A facile and versatile strategy for fabricating thin-film nanocomposite membranes with polydopamine-piperazine nanoparticles generated in situ [J]. Journal of Membrane Science, 2019, 579: 79-89. |
[1] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[2] | 王大为, 毕春梦, 秦永丽, 蒋永荣, 谢华宾, 毛宇昆, 苗雪岩. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519. |
[3] | 朱义浩, 赵白航, 王淳, 张雨晴, 杨海山. 改性煤矸石基沸石对水中腐殖酸的吸附性能[J]. 化工进展, 2023, 42(10): 5531-5537. |
[4] | 张会霞, 周立山, 张程蕾, 钱光磊, 谢陈鑫, 朱令之. Bi2S3/TiO2纳米锥光阳极的制备及其光电催化降解土霉素[J]. 化工进展, 2023, 42(10): 5548-5557. |
[5] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[6] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[7] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[8] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[9] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[10] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[11] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[12] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[13] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[14] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[15] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |