化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 446-455.DOI: 10.16085/j.issn.1000-6613.2020-2359
金春江1,2,3(), 王鲁元1,2(), 陈惠敏3, 程星星4, 张兴宇2, 孙荣峰1,2, 耿文广1,2
收稿日期:
2020-11-25
修回日期:
2021-02-21
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
王鲁元
作者简介:
金春江(1994—),硕士研究生,主要研究方向为挥发性有机化合物(VOCs)环保治理及炭材料制备。E-mail:基金资助:
JIN Chunjiang1,2,3(), WANG Luyuan1,2(), CHEN Huimin3, CHENG Xingxing4, ZHANG Xingyu2, SUN Rongfeng1,2, GENG Wenguang1,2
Received:
2020-11-25
Revised:
2021-02-21
Online:
2021-10-25
Published:
2021-11-09
Contact:
WANG Luyuan
摘要:
活性炭吸附法因技术成熟、简单易行、吸附效率高等优点而被广泛应用于挥发性有机化合物(VOCs)的处理中。本文以山林废弃物的野山桃核为原料,烟道废气及硝酸铁为活化剂,制备了一系列生物质活性炭,并利用固定床吸附装置对其吸附、再生性能进行了研究。利用二氧化碳和水蒸气模拟烟气,在固定流量的烟气活化氛围中进行活化,并探讨了不同硝酸铁的量对活性炭的孔隙结构及其吸附再生性能的影响。利用N2 吸附-脱附实验、扫描电镜、拉曼光谱和红外光谱等技术研究了活性炭详细特征。结果表明:当硝酸铁的质量分数为0.2% 时,所制备的活性炭AC-3具有最大的比表面积和平均孔径,分别为923m2/g及2.57nm。其对乙酸乙酯的饱和吸附量也最大,为973.04mg/g。利用烟气对AC-3活性炭进行活化再生处理,经过3次重复吸附-解吸再生实验,其饱和吸附能力仍可达91.5%以上,实现了废弃烟气资源化利用及活性炭的循环回收,从而达到废气治理的目标。
中图分类号:
金春江, 王鲁元, 陈惠敏, 程星星, 张兴宇, 孙荣峰, 耿文广. 一步快速活化法制备生物质活性炭及其对乙酸乙酯的吸附再生[J]. 化工进展, 2021, 40(S1): 446-455.
JIN Chunjiang, WANG Luyuan, CHEN Huimin, CHENG Xingxing, ZHANG Xingyu, SUN Rongfeng, GENG Wenguang. Preparation of biomass activated carbon by one step rapid activation and its adsorption regeneration for ethyl acetate[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 446-455.
工业分析/%(空干基) | 元素分析/%(干燥无灰基) | ||||||||
---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氮 | 硫 | 氧 | |
2.15 | 4.41 | 80.24 | 13.00 | 50.67 | 4.811 | 0.56 | 0.098 | 37.149 |
表1 山桃核的工业分析与元素分析(质量分数)
工业分析/%(空干基) | 元素分析/%(干燥无灰基) | ||||||||
---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氮 | 硫 | 氧 | |
2.15 | 4.41 | 80.24 | 13.00 | 50.67 | 4.811 | 0.56 | 0.098 | 37.149 |
ACs样品 | 比表面积 /m2 · g-1 | 微孔比 表面积/m2 · g-1 | 总孔容 /cm3 · g-1 | 微孔孔容 /cm3 · g-1 | 平均 孔径/nm |
---|---|---|---|---|---|
AC | 388 | 358.34 | 0.27 | 0.21 | 2.74 |
AC-1 | 657 | 573.63 | 0.29 | 0.25 | 1.70 |
AC-2 | 679 | 593.63 | 0.40 | 0.33 | 2.50 |
AC-3 | 923 | 792.16 | 0.59 | 0.46 | 2.57 |
AC-4 | 631 | 559.12 | 0.37 | 0.32 | 2.34 |
表2 ACs样品孔隙结构特征数据
ACs样品 | 比表面积 /m2 · g-1 | 微孔比 表面积/m2 · g-1 | 总孔容 /cm3 · g-1 | 微孔孔容 /cm3 · g-1 | 平均 孔径/nm |
---|---|---|---|---|---|
AC | 388 | 358.34 | 0.27 | 0.21 | 2.74 |
AC-1 | 657 | 573.63 | 0.29 | 0.25 | 1.70 |
AC-2 | 679 | 593.63 | 0.40 | 0.33 | 2.50 |
AC-3 | 923 | 792.16 | 0.59 | 0.46 | 2.57 |
AC-4 | 631 | 559.12 | 0.37 | 0.32 | 2.34 |
AC | qe /mg · g-1 | K | n | R2 |
---|---|---|---|---|
AC | 504.427 | 0.062 | 1.19 | 0.993 |
AC-1 | 682.853 | 0.0036 | 1.20 | 0.984 |
AC-2 | 713.628 | 0.0104 | 1.05 | 0.987 |
AC-3 | 1008.923 | 0.0023 | 1.17 | 0.985 |
AC-4 | 498.524 | 0.0055 | 1.09 | 0.997 |
表3 乙酸乙酯的Bangham模型参数拟合
AC | qe /mg · g-1 | K | n | R2 |
---|---|---|---|---|
AC | 504.427 | 0.062 | 1.19 | 0.993 |
AC-1 | 682.853 | 0.0036 | 1.20 | 0.984 |
AC-2 | 713.628 | 0.0104 | 1.05 | 0.987 |
AC-3 | 1008.923 | 0.0023 | 1.17 | 0.985 |
AC-4 | 498.524 | 0.0055 | 1.09 | 0.997 |
1 | 王跃欣. 焦炉废烟气资源化技术应用实践[C]// 2017焦化行业节能环保及新工艺新技术交流会论文集. 河北邢台, 2017: 66-68. |
WANG Yuexin. Application practice of coke oven waste gas recycling technology [C]//Proceedings of 2017 Coking Industry Energy Conservation and Environmental Protection and New Technology Exchange Conference. Xingtai, Hebei, 2017: 66-68. | |
2 | 徐冬, 张军, 李刚, 等. 电厂废气中饱和水蒸气对活性炭变压吸附捕集CO2的影响[J]. 燃料化学学报, 2011, 39(3): 11-16. |
XU Dong, ZHANG Jun, LI Gang, et al. Effect of saturated steam in power plant exhaust gas on CO2 capture by activated carbon [J]. Journal of Fuel Chemistry and Technology, 2011, 39(3): 11-16 | |
3 | WU Y, LIU D, WU Y, et al. Effect of electrostatic properties of IRMOFs on VOCs adsorption: a density functional theory study[J]. Adsorption, 2014, 20(5): 5-6. |
4 | ZHANG X, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338:102-123. |
5 | KLETT C, DUTEN X, TIENG S, et al. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process[J]. Journal of Hazardous Materials, 2014, 279:356-364. |
6 | MAIN D M, HOGAN T J. Health effects of low-level exposure to formaldehyde[J]. Journal of Occupational and Environmental Medicine, 1983, 25(12):896-900. |
7 | ALSLAIBI T M, ABUSTAN I, AHMAD M A, et al. A review: production of activated carbon from agricultural byproducts via conventional and microwave heating[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7):1183-1190. |
8 | XUE Y, DU C, WU Z, et al. Relationship of cellulose and lignin contents in biomass to the structure and RB-19 adsorption behavior of activated carbon[J]. New Journal of Chemistry, 2018, 42(10): 1039. |
9 | 张春山, 邵曼君. 活性炭材料改性及其在环境治理中的应用[J]. 过程工程学报, 2005, 25(2): 223-227. |
ZHANG Chunshan, SHAO Manjun. Modification of activated carbon and its application in environmental treatment [J]. The Chinese Journal of Process Engineering, 2005, 25(2): 223-227. | |
10 | KIM B J, PARK S J. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons[J]. Journal of Colloid and Interface Science, 2007, 311(2): 619-621. |
11 | LI Q, JIAN S, XIAO L, et al. Adsorption of volatile organic compounds on three activated carbon samples: effect of pore structure[J]. Journal of Central South University, 2012, 19(12): 3530-3539. |
12 | MENG F, SONG M, WEI Y, et al. The contribution of oxygen-containing functional groups to the gas-phase adsorption of volatile organic compounds with different polarities onto lignin-derived activated carbon fibers[J]. Environmental Science and Pollution Research, 2019, 26(7): 7195-7204. |
13 | CHIANG H, CHIANG P C, HUANG C P. Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene[J]. Chemosphere, 2002, 47(3):267-275. |
14 | TSENG R L, TSENG S K. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob[J]. Journal of Colloid & Interface Ence, 2005, 287(2): 428-437. |
15 | 梅凡民, 傅成诚, 杨青莉, 等. 活性炭表面酸性含氧官能团对吸附甲醛的影响[J]. 环境污染与防治, 2010, 32(3): 18-22. |
MEI Fanmin, FU Chengcheng, YANG Qingli, et al. Effect of acidic oxygen-containing functional groups on adsorption of formaldehyde on activated carbon [J]. Environmental Pollution and Control, 2010, 32(3): 18-22 | |
16 | 汤进华, 梁晓怿, 龙东辉, 等. 活性炭孔结构和表面官能团对吸附甲醛性能影响[J]. 炭素技术, 2007(3): 21-25. |
TANG Jinhua, LIANG Xiaoyi, LONG Donghui, et al. Effects of pore structure and surface functional groups of activated carbon on adsorption of formaldehyde [J]. Carbon Technologes, 2007(3): 21-25. | |
17 | 李芮, 施宇震, 宁平, 等. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140. |
LI Rui, SHI Yuzhen, NING Ping, et al. Research progress on adsorption of toluene waste gas by modified activated carbon[J]. Materials Reports, 2019, 33(7): 1133-1140. | |
18 | FU J, ZHANG J, JIN C, et al. Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process[J]. Bioresource Technology, 2020, 310: 123413. |
19 | 吴晓凤, 于志明, 宿可, 等. 氢氧化钾活化法制备杨木刨花板活性炭的研究[J]. 北京林业大学学报, 2013, 35(6): 113-117. |
WU Xiaofeng, YU Zhiming, SU Ke, et al. Preparation of activated carbon from poplar particleboard by potassium hydroxide activation [J]. Journal of Beijing Forestry University, 2013, 35(6): 113-117. | |
20 | GUO F, JIANG X, LI X, et al. Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green[J]. Materials Chemistry and Physics, 2019, 240:122240. |
21 | DUAN X H, SRINIVASAKANNAN C, JIN P, et al. Preparation of activated carbon from Jatropha hull with microwave heating: optimization using response surface methodology[J]. Fuel Processing Technology, 2011, 92(3): 394-400. |
22 | 陈璐, 张秀惠, 李向尧, 等. 二氧化碳活化制备杏壳活性炭及对其孔径影响[J]. 广州化工, 2019, 47(20): 87-89, 102. |
CHEN Lu, ZHANG Xiuhui, LI Xiangyao, et al. Preparation of activated carbon from apricot shell by carbon dioxide activation and its effect on pore size [J]. Guangzhou Chemical Engineering, 2019, 47(20): 87-89, 102. | |
23 | GUO F Q, LI X, JIANG X, et al. Characteristics and toxic dye adsorption of magnetic activated carbon prepared from biomass waste by modified one-step synthesis[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2018, 555:43-54. |
24 | 顾霖, 贾李娟, 吴柳彦, 等. 超高交联树脂吸附乙酸乙酯蒸汽的动态穿透特性[J]. 离子交换与吸附, 2016, 32(3): 193-201. |
GU Lin, JIA Lijuan, WU Liuyan, et al. Dynamic penetration characteristics of ethyl acetate vapor adsorbed by ultra-high crosslinked resin [J]. Ion Exchange and Adsorption, 2016, 32(3): 193-201. | |
25 | FU J, JIN C, ZHANG J, et al. Pore structure and VOCs adsorption characteristics of activated coke powders derived via one:tep rapid pyrolysis activation method[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(1):25-37. |
26 | SUN F, GAO J, LIU X, et al. Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption[J]. Chemical Engineering Journal, 2016,290(44): 116-124. |
27 | ZHANG T, WALAWENDER W P, FAN L, et al. Preparation of activated carbon from forest and agricultural residues through CO2 activation[J]. Chemical Engineering Journal, 2004, 105(1/2):53-59. |
28 | CAZEBTTA A L, PEZOTI O, BEDIN K C, et al. Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes[J]. ACS Sustainable Chemistry, 2016, 4(3):5b01141. |
29 | LASHAKI M J, FAYAZ M, WANG H, et al. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon[J]. Environmental Ence & Technology, 2012, 46(7): 4083-4090. |
30 | 郭璇, 赵昊星. 硝酸铁改性活性炭对六价铬离子吸附性能研究[J].广东化工, 2020, 47(16): 8-9, 27. |
GUO Xuan, ZHAO Haoxing. Adsorption of hexavalent chromium ion on activated carbon modified by ferric nitrate [J]. Guangdong Chemical Engineering, 2020, 47(16): 8-9, 27. | |
31 | LUO C, TIAN Z, YANG B, et al. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal[J]. Chemical Engineering Journal, 2013, 234: 256-265. |
32 | KANG D, YU X, TONG S, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution[J]. Chemical Engineering Journal, 2013, 228(14):731-740. |
33 | 王惠松, 金承钰, 吕升, 等. 活性炭负载Fe(OH)3复合吸附剂的制备及磷吸附性能[J]. 实验室研究与探索, 2016, 35(4): 22-25. |
WANG Huisong, JIN Chengyu, Sheng LYU, et al. Preparation and phosphorus adsorption properties of activated carbon supported Fe(OH)3 composite adsorbent [J]. Research and Exploration in Laboratory, 2016, 35(4): 22-25. | |
34 | RANJITHKUMAR V, SANGEETHA S, VAIRAM S. Synthesis of magnetic activated carbon/α-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water[J]. Journal of Hazardous Materials, 2014, 273:127-135. |
35 | OGUNGBENRO A E, QUANG D V, Al-Ali K A, et al. Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption[J]. Journal of Environmental Chemical Engineering, 2020,8(5):104257. |
36 | 林美珊, 陈玉, 吴丽萍. 改性稻壳灰对Cr(Ⅵ)的吸附性能及机理研究[J]. 武汉轻工大学学报, 2019, 38(3): 37-45. |
LIN Meishan, CHEN Yu, WU Liping. Adsorption properties and mechanism of modified rice husk ash for Cr(Ⅵ) [J]. Journal of Wuhan University of Light Industry, 2019, 38(3): 37-45. | |
37 | 陈益清, 高晓洋, 伍健威, 等. 碱改性活性炭对VOCs的吸附性能[J]. 化工环保, 2019, 39(2): 202-207. |
CHEN Yiqing, GAO Xiaoyang, WU Jianwei, et al. Adsorption properties of alkali modified activated carbon for VOCs[J]. Environmental Protection of Chemical Industry, 2019, 39(2): 202-207. | |
38 | HARDWICK L J, HAHN M, RUCH P. An in situ Raman study of the intercalation ofsupercapacitor-type electrolyte into microcrystalline graphite[J]. Electrochim Acta, 2006, 52: 675-680. |
39 | Kwangjae WOO, KIM Sangdo, LEE Sihyun. Adsorption characteristics of multi-component VOCs including poorly adsorbable chemicals on activated carbonaceous adsorbents[J]. Korean Chemical Engineering Research, 2007, 45(3): 277-285. |
40 | BOONAMNUAYVITAYA V, SAEUNG S, TANTHAPANICHAKOOM W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J]. Separation and Purification Technology, 2005, 42(2): 159-168. |
41 | AN H, SUN X, CHENG X, et al. Investigation on mercury removal and recovery based on enhanced adsorption by activated coke[J]. Journal of Hazardous Materials, 2019, 384: 354-362. |
42 | CHENU M, BOUZAZA A, WOLBERT D, et al. Adsorption of volatile organic compounds (VOC) mixtures onto activated carbon[J]. Experimental Study and Simulation of Multicomponent Adsorption, 1998, 19(10): 1029-1038. |
43 | IRFAN S, PASCALINE P, ALAPPAT B J. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4):1733-1738. |
44 | 杨丙星, 叶丽萍, 黄金花. 不同种类活性炭对甲苯吸附再生性能研究[J]. 应用技术学报, 2019, 19(2): 130-135. |
YANG Bingxing, YE Liping, HUANG Jinhua. Study on the adsorption and regeneration of toluene by different kinds of activated carbon[J]. Journal of Technology, 2019, 19(2): 130-135. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[12] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[13] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[14] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[15] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |