1 |
王跃欣. 焦炉废烟气资源化技术应用实践[C]// 2017焦化行业节能环保及新工艺新技术交流会论文集. 河北邢台, 2017: 66-68.
|
|
WANG Yuexin. Application practice of coke oven waste gas recycling technology [C]//Proceedings of 2017 Coking Industry Energy Conservation and Environmental Protection and New Technology Exchange Conference. Xingtai, Hebei, 2017: 66-68.
|
2 |
徐冬, 张军, 李刚, 等. 电厂废气中饱和水蒸气对活性炭变压吸附捕集CO2的影响[J]. 燃料化学学报, 2011, 39(3): 11-16.
|
|
XU Dong, ZHANG Jun, LI Gang, et al. Effect of saturated steam in power plant exhaust gas on CO2 capture by activated carbon [J]. Journal of Fuel Chemistry and Technology, 2011, 39(3): 11-16
|
3 |
WU Y, LIU D, WU Y, et al. Effect of electrostatic properties of IRMOFs on VOCs adsorption: a density functional theory study[J]. Adsorption, 2014, 20(5): 5-6.
|
4 |
ZHANG X, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338:102-123.
|
5 |
KLETT C, DUTEN X, TIENG S, et al. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process[J]. Journal of Hazardous Materials, 2014, 279:356-364.
|
6 |
MAIN D M, HOGAN T J. Health effects of low-level exposure to formaldehyde[J]. Journal of Occupational and Environmental Medicine, 1983, 25(12):896-900.
|
7 |
ALSLAIBI T M, ABUSTAN I, AHMAD M A, et al. A review: production of activated carbon from agricultural byproducts via conventional and microwave heating[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7):1183-1190.
|
8 |
XUE Y, DU C, WU Z, et al. Relationship of cellulose and lignin contents in biomass to the structure and RB-19 adsorption behavior of activated carbon[J]. New Journal of Chemistry, 2018, 42(10): 1039.
|
9 |
张春山, 邵曼君. 活性炭材料改性及其在环境治理中的应用[J]. 过程工程学报, 2005, 25(2): 223-227.
|
|
ZHANG Chunshan, SHAO Manjun. Modification of activated carbon and its application in environmental treatment [J]. The Chinese Journal of Process Engineering, 2005, 25(2): 223-227.
|
10 |
KIM B J, PARK S J. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons[J]. Journal of Colloid and Interface Science, 2007, 311(2): 619-621.
|
11 |
LI Q, JIAN S, XIAO L, et al. Adsorption of volatile organic compounds on three activated carbon samples: effect of pore structure[J]. Journal of Central South University, 2012, 19(12): 3530-3539.
|
12 |
MENG F, SONG M, WEI Y, et al. The contribution of oxygen-containing functional groups to the gas-phase adsorption of volatile organic compounds with different polarities onto lignin-derived activated carbon fibers[J]. Environmental Science and Pollution Research, 2019, 26(7): 7195-7204.
|
13 |
CHIANG H, CHIANG P C, HUANG C P. Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene[J]. Chemosphere, 2002, 47(3):267-275.
|
14 |
TSENG R L, TSENG S K. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob[J]. Journal of Colloid & Interface Ence, 2005, 287(2): 428-437.
|
15 |
梅凡民, 傅成诚, 杨青莉, 等. 活性炭表面酸性含氧官能团对吸附甲醛的影响[J]. 环境污染与防治, 2010, 32(3): 18-22.
|
|
MEI Fanmin, FU Chengcheng, YANG Qingli, et al. Effect of acidic oxygen-containing functional groups on adsorption of formaldehyde on activated carbon [J]. Environmental Pollution and Control, 2010, 32(3): 18-22
|
16 |
汤进华, 梁晓怿, 龙东辉, 等. 活性炭孔结构和表面官能团对吸附甲醛性能影响[J]. 炭素技术, 2007(3): 21-25.
|
|
TANG Jinhua, LIANG Xiaoyi, LONG Donghui, et al. Effects of pore structure and surface functional groups of activated carbon on adsorption of formaldehyde [J]. Carbon Technologes, 2007(3): 21-25.
|
17 |
李芮, 施宇震, 宁平, 等. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
|
|
LI Rui, SHI Yuzhen, NING Ping, et al. Research progress on adsorption of toluene waste gas by modified activated carbon[J]. Materials Reports, 2019, 33(7): 1133-1140.
|
18 |
FU J, ZHANG J, JIN C, et al. Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process[J]. Bioresource Technology, 2020, 310: 123413.
|
19 |
吴晓凤, 于志明, 宿可, 等. 氢氧化钾活化法制备杨木刨花板活性炭的研究[J]. 北京林业大学学报, 2013, 35(6): 113-117.
|
|
WU Xiaofeng, YU Zhiming, SU Ke, et al. Preparation of activated carbon from poplar particleboard by potassium hydroxide activation [J]. Journal of Beijing Forestry University, 2013, 35(6): 113-117.
|
20 |
GUO F, JIANG X, LI X, et al. Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green[J]. Materials Chemistry and Physics, 2019, 240:122240.
|
21 |
DUAN X H, SRINIVASAKANNAN C, JIN P, et al. Preparation of activated carbon from Jatropha hull with microwave heating: optimization using response surface methodology[J]. Fuel Processing Technology, 2011, 92(3): 394-400.
|
22 |
陈璐, 张秀惠, 李向尧, 等. 二氧化碳活化制备杏壳活性炭及对其孔径影响[J]. 广州化工, 2019, 47(20): 87-89, 102.
|
|
CHEN Lu, ZHANG Xiuhui, LI Xiangyao, et al. Preparation of activated carbon from apricot shell by carbon dioxide activation and its effect on pore size [J]. Guangzhou Chemical Engineering, 2019, 47(20): 87-89, 102.
|
23 |
GUO F Q, LI X, JIANG X, et al. Characteristics and toxic dye adsorption of magnetic activated carbon prepared from biomass waste by modified one-step synthesis[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2018, 555:43-54.
|
24 |
顾霖, 贾李娟, 吴柳彦, 等. 超高交联树脂吸附乙酸乙酯蒸汽的动态穿透特性[J]. 离子交换与吸附, 2016, 32(3): 193-201.
|
|
GU Lin, JIA Lijuan, WU Liuyan, et al. Dynamic penetration characteristics of ethyl acetate vapor adsorbed by ultra-high crosslinked resin [J]. Ion Exchange and Adsorption, 2016, 32(3): 193-201.
|
25 |
FU J, JIN C, ZHANG J, et al. Pore structure and VOCs adsorption characteristics of activated coke powders derived via one:tep rapid pyrolysis activation method[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(1):25-37.
|
26 |
SUN F, GAO J, LIU X, et al. Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption[J]. Chemical Engineering Journal, 2016,290(44): 116-124.
|
27 |
ZHANG T, WALAWENDER W P, FAN L, et al. Preparation of activated carbon from forest and agricultural residues through CO2 activation[J]. Chemical Engineering Journal, 2004, 105(1/2):53-59.
|
28 |
CAZEBTTA A L, PEZOTI O, BEDIN K C, et al. Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes[J]. ACS Sustainable Chemistry, 2016, 4(3):5b01141.
|
29 |
LASHAKI M J, FAYAZ M, WANG H, et al. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon[J]. Environmental Ence & Technology, 2012, 46(7): 4083-4090.
|
30 |
郭璇, 赵昊星. 硝酸铁改性活性炭对六价铬离子吸附性能研究[J].广东化工, 2020, 47(16): 8-9, 27.
|
|
GUO Xuan, ZHAO Haoxing. Adsorption of hexavalent chromium ion on activated carbon modified by ferric nitrate [J]. Guangdong Chemical Engineering, 2020, 47(16): 8-9, 27.
|
31 |
LUO C, TIAN Z, YANG B, et al. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal[J]. Chemical Engineering Journal, 2013, 234: 256-265.
|
32 |
KANG D, YU X, TONG S, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution[J]. Chemical Engineering Journal, 2013, 228(14):731-740.
|
33 |
王惠松, 金承钰, 吕升, 等. 活性炭负载Fe(OH)3复合吸附剂的制备及磷吸附性能[J]. 实验室研究与探索, 2016, 35(4): 22-25.
|
|
WANG Huisong, JIN Chengyu, Sheng LYU, et al. Preparation and phosphorus adsorption properties of activated carbon supported Fe(OH)3 composite adsorbent [J]. Research and Exploration in Laboratory, 2016, 35(4): 22-25.
|
34 |
RANJITHKUMAR V, SANGEETHA S, VAIRAM S. Synthesis of magnetic activated carbon/α-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water[J]. Journal of Hazardous Materials, 2014, 273:127-135.
|
35 |
OGUNGBENRO A E, QUANG D V, Al-Ali K A, et al. Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption[J]. Journal of Environmental Chemical Engineering, 2020,8(5):104257.
|
36 |
林美珊, 陈玉, 吴丽萍. 改性稻壳灰对Cr(Ⅵ)的吸附性能及机理研究[J]. 武汉轻工大学学报, 2019, 38(3): 37-45.
|
|
LIN Meishan, CHEN Yu, WU Liping. Adsorption properties and mechanism of modified rice husk ash for Cr(Ⅵ) [J]. Journal of Wuhan University of Light Industry, 2019, 38(3): 37-45.
|
37 |
陈益清, 高晓洋, 伍健威, 等. 碱改性活性炭对VOCs的吸附性能[J]. 化工环保, 2019, 39(2): 202-207.
|
|
CHEN Yiqing, GAO Xiaoyang, WU Jianwei, et al. Adsorption properties of alkali modified activated carbon for VOCs[J]. Environmental Protection of Chemical Industry, 2019, 39(2): 202-207.
|
38 |
HARDWICK L J, HAHN M, RUCH P. An in situ Raman study of the intercalation ofsupercapacitor-type electrolyte into microcrystalline graphite[J]. Electrochim Acta, 2006, 52: 675-680.
|
39 |
Kwangjae WOO, KIM Sangdo, LEE Sihyun. Adsorption characteristics of multi-component VOCs including poorly adsorbable chemicals on activated carbonaceous adsorbents[J]. Korean Chemical Engineering Research, 2007, 45(3): 277-285.
|
40 |
BOONAMNUAYVITAYA V, SAEUNG S, TANTHAPANICHAKOOM W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J]. Separation and Purification Technology, 2005, 42(2): 159-168.
|
41 |
AN H, SUN X, CHENG X, et al. Investigation on mercury removal and recovery based on enhanced adsorption by activated coke[J]. Journal of Hazardous Materials, 2019, 384: 354-362.
|
42 |
CHENU M, BOUZAZA A, WOLBERT D, et al. Adsorption of volatile organic compounds (VOC) mixtures onto activated carbon[J]. Experimental Study and Simulation of Multicomponent Adsorption, 1998, 19(10): 1029-1038.
|
43 |
IRFAN S, PASCALINE P, ALAPPAT B J. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4):1733-1738.
|
44 |
杨丙星, 叶丽萍, 黄金花. 不同种类活性炭对甲苯吸附再生性能研究[J]. 应用技术学报, 2019, 19(2): 130-135.
|
|
YANG Bingxing, YE Liping, HUANG Jinhua. Study on the adsorption and regeneration of toluene by different kinds of activated carbon[J]. Journal of Technology, 2019, 19(2): 130-135.
|