化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3747-3759.DOI: 10.16085/j.issn.1000-6613.2020-1571
收稿日期:
2020-08-07
修回日期:
2021-02-14
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
刘建军
作者简介:
王艺蒙(1997—),女,硕士研究生,研究方向为层状光催化剂。E-mail:基金资助:
WANG Yimeng(), LIU Jianjun(), ZUO Shengli, LI Kang
Received:
2020-08-07
Revised:
2021-02-14
Online:
2021-07-06
Published:
2021-07-19
Contact:
LIU Jianjun
摘要:
MoS2是一类典型的后石墨烯二维材料,具有优异的光电性能及良好的化学稳定性,是近年来被广泛研究的一类新型光电催化剂,有关其催化活性位点的构效关系和反应机理是目前的研究热点。本文介绍了MoS2的结构特性和活性位点分布,重点归纳分析了近年来有关MoS2活性位点的构筑方法,包括利用降低维度、晶相调控、特殊形貌设计和非晶化等方法对MoS2本体进行改造,以及采用原子掺杂、缺陷工程的方式对MoS2进行协同修饰。通过对催化性能及反应机理的研究,表明这些方法能有效提高MoS2的催化性能。最后,结合研究现状对目前存在的挑战和研究方向进行了分析总结,指出在MoS2上构造有序分布的活性位点并平衡其稳定性以及催化性能的构效关系是未来MoS2在光电催化领域中的研究重点。
中图分类号:
王艺蒙, 刘建军, 左胜利, 李抗. MoS2光电催化剂活性位点的优化和效能研究进展[J]. 化工进展, 2021, 40(7): 3747-3759.
WANG Yimeng, LIU Jianjun, ZUO Shengli, LI Kang. Research progress of active sites of MoS2 photoelectrocatalyst: optimization and performance[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3747-3759.
1 | AMBROSI A, SOFER Z, PUMERA M. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition[J]. Chemical Communications (Cambridge, England), 2015, 51(40): 8450-8453. |
2 | GONG X Y, GU Y Q, LI N, et al. Thermally stable hierarchical nanostructures of ultrathin MoS2 nanosheet-coated CeO2 hollow spheres as catalyst for ammonia decomposition[J]. Inorganic Chemistry, 2016, 55(8): 3992-3999. |
3 | LI J, PENG Y, QIAN X, et al. Few-layer Co-doped MoS2 nanosheets with rich active sites as an efficient cocatalyst for photocatalytic H2 production over CdS[J]. Applied Surface Science, 2018, 452: 437-442. |
4 | HERSAM M C. The reemergence of chemistry for post-graphene two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(5): 4661-4663. |
5 | SERVICE R F. Beyond graphene[J]. Science, 2015, 348(6234): 490-492. |
6 | HAN B, HU Y H. MoS2 as a co-catalyst for photocatalytic hydrogen production from water[J]. Energy Science & Engineering, 2016, 4(5): 285-304. |
7 | HUO N, YANG Y, WU Y N, et al. High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression[J]. Nanoscale, 2018, 10(31): 15071-15077. |
8 | ABINAYA R, ARCHANA J, HARISH S, et al. Ultrathin layered MoS2 nanosheets with rich active sites for enhanced visible light photocatalytic activity[J]. RSC Advances, 2018, 8(47): 26664-26675. |
9 | LALITHAMBIKA K C, SHANMUGAPRIYA K, SRIRAM S. Photocatalytic activity of MoS2 nanoparticles: an experimental and DFT analysis[J]. Applied Physics A, 2019, 125(12): 1-8. |
10 | CHERIYAN S, BALAMURGAN D, SRIRAM S. Doping effect on monolayer MoS2 for visible light dye degradation—A DFT study[J]. Superlattices and Microstructures, 2018, 116: 238-243. |
11 | CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4):263-275. |
12 | GENG S, YANG W W, LIU Y Q, et al. Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction[J]. Journal of Catalysis, 2020, 391: 91-97. |
13 | ZHAO Y, ZHANG X, WANG T, et al. Fabrication of rGO/CdS@2H,1T, amorphous MoS2 heterostructure for enhanced photocatalytic and electrocatalytic activity[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21409-21421. |
14 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
15 | CHEN H J, HUANG J, LEI X L, et al. Adsorption and diffusion of lithium on MoS2 monolayer: the role of strain and concentration[J]. International Journal of Electrochemical Science, 2013, 8(2): 2196-2203. |
16 | HE Z L, QUE W X. Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction[J]. Applied Materials Today, 2016, 3: 23-56. |
17 | HE H, LIN J, FU W, et al. MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(14): 1600464. |
18 | KONG D, WANG H, CHA J J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Letters, 2013, 13(3): 1341-1347. |
19 | MO J, WU S, LAU T H M, et al. Transition metal atom-doped monolayer MoS2 in a proton-exchange membrane electrolyzer[J]. Materials Today Advances, 2020, 6: 100020. |
20 | MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63. |
21 | ZHOU K, MAO N, WANG H, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angewandte Chemie, 2011, 50(46):10839-10842. |
22 | PARZINGER E, MILLER B, BLASCHKE B, et al. Photocatalytic stability of single-and few-layer MoS2[J]. ACS Nano, 2015, 9(11): 11302-11309. |
23 | MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Phys. Rev. Lett., 2010, 105(13): 136805. |
24 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
25 | SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. |
26 | MIZUKOSHI Y, NAKAMURA H, BANDOW H, et al. Sonolysis of organic liquid: effect of vapour pressure and evaporation rate[J]. Ultrasonics Sonochemistry, 1999, 6(4):203-209. |
27 | RANI A, SINGH K, PATEL A S, et al. Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites[J]. Chemical Physics Letters, 2020, 738: 136874. |
28 | DAS S, TAMA A M, DUTTA S, et al. Facile high-yield synthesis of MoS2 nanosheets with enhanced photocatalytic performance using ultrasound driven exfoliation technique[J]. Materials Research Express, 2019, 6(12): 125079. |
29 | ZHANG F, YIN Y, LI F, et al. Fabrication of ultrathin-MoS2/Ag/AgBr composite with enhanced photocatalytic activity[J]. Journal of Materials Science, 2020, 55(5): 2166-2175. |
30 | SHIN H H, KANG E, PARK H, et al. Pd-nanodot decorated MoS2 nanosheets as a highly efficient photocatalyst for the visible-light-induced Suzuki-Miyaura coupling reaction[J]. Journal of Materials Chemistry A, 2017, 5(47): 24965-24971. |
31 | ZHENG Y, YIN X, JIANG Y, et al. Nano Ag-decorated MoS2 nanosheets from 1T to 2H phase conversion for photocatalytically reducing CO2 to methanol[J]. Energy Technology, 2019, 7(11): 1900582. |
32 | ALIDO J P M, SARI F N I, TING J M. Synthesis of Ag/hybridized 1T-2H MoS2/TiO2 heterostructure for enhanced visible-light photocatalytic activity[J]. Ceramics International, 2019, 45(17): 23651-23657. |
33 | DU G, GUO Z, WANG S, et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communications(Cambridge, England), 2010, 46(7): 1106-1108. |
34 | YE G, GONG Y, LIN J, et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction[J]. Nano Letters, 2016, 16(2): 1097-1103. |
35 | PRABHAKAR VATTIKUTI S V, BYON C, VENKATA REDDY C, et al. Synthesis and structural characterization of MoS2 nanospheres and nanosheets using solvothermal method[J]. Journal of Materials Science, 2015, 50(14): 5024-5038. |
36 | ZHAI X, XU X, PENG J, et al. Enhanced optoelectronic performance of CVD-grown metal-semiconductor NiTe2/MoS2 heterostructures[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24093-24101. |
37 | LIANG K S, CHIANELLI R R, CHIEN F Z, et al. Structure of poorly crystalline MoS2—A modeling study[J]. Journal of Non-Crystalline Solids, 1986, 79(3): 251-273. |
38 | KUMAR D P, SONG M I, HONG S, et al. Optimization of active sites of MoS2 nanosheets using nonmetal doping and exfoliation into few layers on CdS nanorods for enhanced photocatalytic hydrogen production[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7651-7658. |
39 | XU H, YI J, SHE X, et al. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 220: 379-385. |
40 | LIAN Z Q, LIU Y C, LIU H, et al. Fabrication of CdS@1T-MoS2 core-shell nanostructure for enhanced visible-light-driven photocatalytic H2 evolution from water splitting[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 105: 57-64. |
41 | YIN Y, HAN J C, ZHANG Y M, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138(25): 7965-7972. |
42 | ZHANG X H, LI N, WU J J, et al. Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: the impact of enriched defects[J]. Applied Catalysis B: Environmental, 2018, 229: 227-236. |
43 | ZHU J, WANG Z C, DAI H, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2[J]. Nature Communications, 2019, 10(1): 1348. |
44 | ZHANG Y, KUWAHARA Y, MORI K, et al. Construction of hybrid MoS2 phase coupled with SiC heterojunctions with promoted photocatalytic activity for 4-nitrophenol degradation[J]. Langmuir, 2020, 36(5): 1174-1182. |
45 | CHEN W, YAN R Q, ZHU J Q, et al. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator[J]. Applied Surface Science, 2020, 504: 144406. |
46 | PAN J, DONG Z, JIANG Z, et al. MoS2 quantum dots modified black Ti3+-TiO2/g-C3N4 hollow nanosphere heterojunction toward photocatalytic hydrogen production enhancement[J]. Solar RRL, 2019, 3(12): 1900337. |
47 | FU Y H, LI Z J, LIU Q Q, et al. Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity[J]. Chinese Journal of Catalysis, 2017, 38(12): 2160-2170. |
48 | SHI L, HE Z, LIU S Q. MoS2 quantum dots embedded in g-C3N4 frameworks: a hybrid 0D-2D heterojunction as an efficient visible-light driven photocatalyst[J]. Applied Surface Science, 2018, 457: 30-40. |
49 | HAO X, JIN Z, YANG H, et al. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2017, 210: 45-56. |
50 | MOHANTY B, MITRA A, JENA B, et al. MoS2 quantum dots as efficient electrocatalyst for hydrogen evolution reaction over a wide pH range[J]. Energy & Fuels, 2020, 34(8): 10268-10275. |
51 | ZHANG T, HUANG J W, XIA Y D, et al. A high-efficiency electrocatalyst for hydrogen evolution based on tree-like amorphous MoS2 nanostructures prepared by glancing angle deposition[J]. Journal of Solid State Chemistry, 2020, 286: 121255. |
52 | CHAI B, YAN J, FAN G, et al. Amorphous MoS2 decorated on uniform Cd0.8Zn0.2S microspheres with dramatically improved photocatalytic hydrogen evolution performance[J]. New Journal of Chemistry, 2019, 43(20): 7846-7854. |
53 | SUN H, JI X, QIU Y, et al. Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance[J]. Journal of Alloys and Compounds, 2019, 777: 514-523. |
54 | CHANG K, PANG H, HAI X, et al. Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2018, 232: 446-453. |
55 | SONG S W, WANG Y H, LI W, et al. Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting[J]. Electrochimica Acta, 2020, 332: 135454. |
56 | PAN Z, XIA Z, TAO Y, et al. Co doping induced photocurrent enhancement in photocatalyst MoS2[J]. Catalysis Communications, 2019, 125: 56-60. |
57 | LEI Y, HOU J, WANG F, et al. Boosting the catalytic performance of MoSx cocatalysts over CdS nanoparticles for photocatalytic H2 evolution by Co doping via a facile photochemical route[J]. Applied Surface Science, 2017, 420: 456-464. |
58 | LAURSEN A B, KEGNAES S, DAHL S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy & Environmental Science, 2012, 5(2): 5577-5591. |
59 | WU Z, FANG B, WANG Z, et al. MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction[J]. ACS Catalysis, 2013, 3(9): 2101-2107. |
60 | MEIER A J, GARG A, SUTTER B, et al. MoS2 nanoflowers as a gateway for solar-driven CO2 photoreduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 265-275. |
61 | KIBSGAARD J, CHEN Z, REINECKE B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, 11(11): 963-969. |
62 | LI S, LEE J K, ZHOU S, et al. Synthesis of surface grown Pt nanoparticles on edge-enriched MoS2 porous thin films for enhancing electrochemical performance[J]. Chemistry of Materials, 2019, 31(2): 387-397. |
63 | LIU J, MU X, YANG Y, et al. Construct 3D Pd@MoS2-conjugated polypyrrole framworks heterojunction with unprecedented photocatalytic activity for Tsuji-Trost reaction under visible light[J]. Applied Catalysis B: Environmental, 2019, 244: 356-366. |
64 | PARK S, PARK J, ABROSHAN H, et al. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition[J]. ACS Energy Letters, 2018, 3(11): 2685-2693. |
65 | LIU G, ROBERTSON A W, LI MOLLYM J, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature Chemistry, 2017, 9(8): 810-816. |
66 | HONG S, KUMAR D P, KIM E H, et al. Earth abundant transition metal-doped few-layered MoS2 nanosheets on CdS nanorods for ultra-efficient photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5(39): 20851-20859. |
67 | WANG H, WEN F, LI X, et al. Cerium-doped MoS2 nanostructures: efficient visible photocatalysis for Cr(Ⅵ) removal[J]. Separation and Purification Technology, 2016, 170: 190-198. |
68 | LAU T H M, LU X W, KULHAVY J, et al. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution[J]. Chem. Sci., 2018, 9(21): 4769-4776. |
69 | MO J, WU S, LAU T H M, et al. Transition metal atom-doped monolayer MoS2 in a proton-exchange membrane electrolyzer[J]. Materials Today Advances, 2020, 6: 100020. |
70 | GUO Y, ZHANG X, ZHANG X, et al. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(31):15927-15934. |
71 | MENG C, CHEN X, GAO Y, et al. Recent modification strategies of MoS2 for enhanced electrocatalytic hydrogen evolution[J]. Molecules, 2020, 25(5): 1136. |
72 | XIE J, XIN J, CUI G, et al. Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2016, 3(9): 1160-1166. |
73 | LIU P, LIU Y, YE W, et al. Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation[J]. Nanotechnology, 2016, 27(22):225403. |
74 | CAI W, LUO X, JIANG Y, et al. Nitrogen-doped carbon active sites boost the ultra-stable hydrogen evolution reaction on defect-rich MoS2 nanosheets[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2026-2033. |
75 | LIU P, ZHU J, ZHANG J, et al. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution[J]. ACS Energy Letters, 2017, 2(4): 745-752. |
76 | REN X, MA Q, FAN H, et al. A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction[J]. Chemical Communications(Cambridge, England), 2015, 51(88): 15997-16000. |
77 | LEI L, HUANG D, ZENG G, et al. A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties[J]. Coordination Chemistry Reviews, 2019, 399: 213020. |
78 | WANG Z, LI Q, XU H, et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites[J]. Nano Energy, 2018, 49: 634-643. |
79 | HAN J H, KIM H K, BAEK B, et al. Activation of the basal plane in two dimensional transition metal chalcogenide nanostructures[J]. Journal of the American Chemical Society, 2018, 140(42): 13663-13671. |
80 | WANG W, YANG C, BAI L, et al. First-principles study on the structural and electronic properties of monolayer MoS2 with S-vacancy under uniaxial tensile strain[J]. Nanomaterials, 2018, 8(2): E74. |
81 | WANG X, ZHANG Y, SI H, et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2[J]. Journal of the American Chemical Society, 2020, 142(9): 4298-4308. |
82 | HU C, JIANG Z, ZHOU W, et al. Wafer-scale sulfur vacancy-rich monolayer MoS2 for massive hydrogen production[J]. The Journal of Physical Chemistry Letters, 2019, 10(16): 4763-4768. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[10] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[11] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[14] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[15] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |