化工进展 ›› 2021, Vol. 40 ›› Issue (2): 845-858.DOI: 10.16085/j.issn.1000-6613.2020-0667
梁一尊1,2,3(), 葛艳清1,2,3, 王驰1,2,3(), 李凯4, 梅毅1,2,3
收稿日期:
2020-04-27
修回日期:
2020-08-08
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
王驰
作者简介:
梁一尊(1995—),男,硕士研究生,研究方向为低维黑磷复合材料光催化剂制备。E-mail:基金资助:
Yizun LIANG1,2,3(), Yanqing GE1,2,3, Chi WANG1,2,3(), Kai LI4, Yi MEI1,2,3
Received:
2020-04-27
Revised:
2020-08-08
Online:
2021-02-05
Published:
2021-02-09
Contact:
Chi WANG
摘要:
低维黑磷具有直接可调节带隙结构、高载流子迁移率及良好的生物相容性等优点,使其在光催化降解领域有着不可或缺的地位,但它存在自然环境下极易被氧化和电子空穴利用率低等问题。制备稳定且高效的低维黑磷复合材料对于其实际应用有着重要的意义。本文介绍了低维黑磷的制备和低维黑磷复合材料在光催化降解领域的应用。对不同方法制备的低维黑磷的效果和光学性质的改变进行了比较,对机械剥离、化学气相沉积、液相剥离和溶剂热合成法进行了详细描述及总结。结合现有文献,对碳质、金属、半导体及其他材料和低维黑磷制备的复合材料进行了总结,并对复合材料在光催化降解领域的效果和复合后低维黑磷光学性质的改变进行了分析。提出了低维黑磷及其复合材料在制备上存在的问题,通过文中所述的复合方法及所选复合材料,对低维黑磷的实际应用进行了展望。
中图分类号:
梁一尊, 葛艳清, 王驰, 李凯, 梅毅. 低维黑磷的制备及其在光催化降解领域的应用研究进展[J]. 化工进展, 2021, 40(2): 845-858.
Yizun LIANG, Yanqing GE, Chi WANG, Kai LI, Yi MEI. Research progress on preparation of low-dimensional black phosphorus and its applications in photodegradation field[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 845-858.
制备方法 | 平均尺寸 | 参考文献 |
---|---|---|
少层黑磷烯 | ||
机械剥离:使用胶带粘撕 | 5nm | [ |
机械剥离:使用胶带粘撕 | 0.85nm | [ |
CVD:将红磷放置于SiO2衬底上生长 | 10~20nm | [ |
CVD:将红磷放置于聚酯纤维衬底上生长 | 40nm | [ |
液相剥离:NMP作为溶剂,超声波清洗器处理24h | 3.5~5nm | [ |
液相剥离:NMP中添加NaOH,在12000r/min的条件下离心 | 3.5nm±2nm | [ |
液相剥离:OTF离子液体作为溶剂 | 2~9nm | [ |
液相剥离:阳极电化学辅助剥离 | 横向尺寸2μm | [ |
液相剥离:添加TAA作为插层剂,阴极电化学辅助剥离 | 横向尺寸10μm | [ |
黑磷量子点 | ||
液相剥离:应用流体力学,高速剪切机辅助剥离 | 2.25nm | [ |
热溶剂法剥离:NMP作为溶剂,在140℃下溶剂热法处理6h | 2.1nm±0.9nm | [ |
表1 不同剥离方法制得的低维黑磷尺寸对比
制备方法 | 平均尺寸 | 参考文献 |
---|---|---|
少层黑磷烯 | ||
机械剥离:使用胶带粘撕 | 5nm | [ |
机械剥离:使用胶带粘撕 | 0.85nm | [ |
CVD:将红磷放置于SiO2衬底上生长 | 10~20nm | [ |
CVD:将红磷放置于聚酯纤维衬底上生长 | 40nm | [ |
液相剥离:NMP作为溶剂,超声波清洗器处理24h | 3.5~5nm | [ |
液相剥离:NMP中添加NaOH,在12000r/min的条件下离心 | 3.5nm±2nm | [ |
液相剥离:OTF离子液体作为溶剂 | 2~9nm | [ |
液相剥离:阳极电化学辅助剥离 | 横向尺寸2μm | [ |
液相剥离:添加TAA作为插层剂,阴极电化学辅助剥离 | 横向尺寸10μm | [ |
黑磷量子点 | ||
液相剥离:应用流体力学,高速剪切机辅助剥离 | 2.25nm | [ |
热溶剂法剥离:NMP作为溶剂,在140℃下溶剂热法处理6h | 2.1nm±0.9nm | [ |
复合物 | 制备方法 | 光降解效果 | 光吸收变化 | 活性物质 | 参考文献 |
---|---|---|---|---|---|
石墨烯-黑磷烯 | 化学气相沉积法 | 光照下降解2-CP,在180min时,30%质量比的石墨烯-黑磷烯分别降87.08% | 未提及 | ·O | [ |
C60-黑磷烯 | 高能球磨法 | 50min几乎可以把50mL浓度为0.01mg/mL的RhB降解完全 | 无变化 | ·O | [ |
Ag-黑磷烯 | 化学还原法 | 5%Ag-黑磷烯的反应速率常数为0.574min-1,高于商用P25 | 吸收峰变强 | 未提及 | [ |
TiO2-黑磷烯 | 溶剂热法 | 在紫外光照下降解RhB,复合物的反应速率常数为4.62h-1,黑磷烯仅为0.42h-1;在可见光照下分别为2.05h-1和0.23h-1 | 未提及 | ·OH | [ |
黑磷烯-红磷 | 高能球磨法 | 30min时降解了89%的RhB,对比对可见光有较好吸收的CdS,其30min降解率仅为32% | 无变化 | ·OH | [ |
黑磷烯-C3N4 | 液相超声法 | 15min时,10%黑磷烯-C3N4降解了98%的RhB,而C3N4和黑磷烯分别只有55%和2% | 随C3N4添加量变化 | ·O | [ |
ATP-黑磷量子点 | 水热沉积法 | 在180min的可见光照下,BPA的降解率达到90% | 吸收峰变弱 | h+ | [ |
Ag-黑磷烯/GO | 还原并沉积 | 90min后,Ag-黑磷烯/GO和Ag-黑磷烯分别降解了94%和79%的MB | 吸收峰变弱 | 未提及 | [ |
表2 不同复合材料的催化性能对比
复合物 | 制备方法 | 光降解效果 | 光吸收变化 | 活性物质 | 参考文献 |
---|---|---|---|---|---|
石墨烯-黑磷烯 | 化学气相沉积法 | 光照下降解2-CP,在180min时,30%质量比的石墨烯-黑磷烯分别降87.08% | 未提及 | ·O | [ |
C60-黑磷烯 | 高能球磨法 | 50min几乎可以把50mL浓度为0.01mg/mL的RhB降解完全 | 无变化 | ·O | [ |
Ag-黑磷烯 | 化学还原法 | 5%Ag-黑磷烯的反应速率常数为0.574min-1,高于商用P25 | 吸收峰变强 | 未提及 | [ |
TiO2-黑磷烯 | 溶剂热法 | 在紫外光照下降解RhB,复合物的反应速率常数为4.62h-1,黑磷烯仅为0.42h-1;在可见光照下分别为2.05h-1和0.23h-1 | 未提及 | ·OH | [ |
黑磷烯-红磷 | 高能球磨法 | 30min时降解了89%的RhB,对比对可见光有较好吸收的CdS,其30min降解率仅为32% | 无变化 | ·OH | [ |
黑磷烯-C3N4 | 液相超声法 | 15min时,10%黑磷烯-C3N4降解了98%的RhB,而C3N4和黑磷烯分别只有55%和2% | 随C3N4添加量变化 | ·O | [ |
ATP-黑磷量子点 | 水热沉积法 | 在180min的可见光照下,BPA的降解率达到90% | 吸收峰变弱 | h+ | [ |
Ag-黑磷烯/GO | 还原并沉积 | 90min后,Ag-黑磷烯/GO和Ag-黑磷烯分别降解了94%和79%的MB | 吸收峰变弱 | 未提及 | [ |
1 | 周琳, 李勇. 我国的水污染现状与水环境管理策略研究[J]. 环境与发展, 2018, 30(4): 51-52. |
ZHOU Lin, LI Yong. Research on the current situation of water pollution and water environment management strategy in China[J]. Enviroment & Development, 2018, 30(4): 51-52. | |
2 | CHENG Min, ZENG Guangming, HUANG Danlian, et al. Hydroxyl radicals based advanced oxidation processes for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284(9): 582-598. |
3 | 胡小龙, 孙青, 徐春宏, 等. 纳米TiO2/沸石复合材料光催化降解苯酚的性能[J]. 化工进展, 2016, 35(5): 1519-1523. |
HU Xiaolong, SUN Qing, XU Chunhong, et al. Photocatalytic degradation of phenol by TiO2/zeolite nanocomposite[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1519-1523. | |
4 | 张巧玲, 秦钊, 刘有智, 等. 氧化石墨烯-TiO2复合材料对三种染料的吸附动力学及光催化性能[J]. 化工进展, 2019, 38(6): 2870-2879. |
ZHANG Qiaolin, QIN Zhao, LIU Youzhi, et al. Adsorption kinetics and photocatalytic properties of GO-TiO2 composite for three dyes[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2870-2879. | |
5 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
6 | FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. The Journal of Physical Chemistry, 1977, 81(15): 1484-1488. |
7 | CHEN Xiaobo, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959. |
8 | BRIDGMAN P W. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 1914, 36(7): 1344-1363. |
9 | LI Likai, YU Yijun, YE Guojun, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. |
10 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. |
11 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat. Nanotechnol., 2011, 6(3): 147-150. |
12 | LI Bisheng, LAI Cui, ZENG Guangming, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications[J]. Small, 2019, 15(8): 1804565. |
13 | KEYES R. The electrical properties of black phosphorus[J]. Physical Review, 1953, 92(3): 580-584. |
14 | SUN Liqun, LI Mingjuan, SUN Kai, et al. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2012, 116(28): 14772-14779. |
15 | MARUYAMA Y, SUZUKI S, KOBAYASHI K, et al. Synthesis and some properties of black phosphorus single crystals[J]. Physica B+C, 1981, 105(1/2/3): 99-102. |
16 | ZHAO Ming, WANG Yewu, QIAN Haolei, et al. Growth mechanism and enhanced yield of black phosphorus micro-ribbons[J]. Crystal Growth & Design, 2015, 16(2): 1096-1103. |
17 | 卢秋菊, 汤永威, 赵俊平, 等. 高纯黑磷的低成本宏量制备研究[J]. 磷肥与复肥, 2019, 34(9): 43-47. |
LU Qiuju, TANG Yongwei, ZHAO Junping, et al. Low cost preparation of high purity black phosphorus study[J]. Phosphate & Compound Fertilizer, 2019, 34(9): 43-47. | |
18 | TRAN V, SOKLASKI R, LIANG Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 817-824. |
19 | HEMBRAM K P S S, JUNG Hyun, Byung Chul YEO, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15041-15046. |
20 | RAHMAN M Z, KWONG Chi Wai, DAVEY K, et al. Phosphorene as a water splitting photocatalyst: fundamentals to applications[J]. Energy & Environmental Science, 2016, 9(3): 709-728. |
21 | CAI Kun, LIU Lingnan, SHI Jiao, et al. Winding a nanotube from black phosphorus nanoribbon onto a CNT at low temperature: a molecular dynamics study[J]. Materials & Design, 2017, 121(5): 406-413. |
22 | LIU Han, NEAL A, ZHU Zhen, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. |
23 | BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect tansistors[J]. Nano Letters, 2014, 14(6): 3347-3352. |
24 | SMITH J B, HAGAMAN D, JI Haifeng. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 2016, 27(21): 215602. |
25 | LI Xuesong, DENG Bingchen, WANG Xiaomu, et al. Synthesis of thin-film black phosphorus on a flexible substrate[J]. 2D Materials, 2015, 2(3): 031002. |
26 | BRENT J R, SAVJANI N, LEWIS E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-133341. |
27 | GUO Zhinan, ZHANG Han, LU Shunbin, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 2015, 25(45): 6996-7002. |
28 | YASAEI P, KUMAR B, FOROOZAN T, et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation[J]. Advanced Materials, 2015, 11(27): 1887-1892. |
29 | ZHU Chongyang, XU Feng, ZHANG Ling, et al. Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing[J]. Chemistry, 2016, 22(22): 7357-7362. |
30 | CHEN Long, ZHOU Guangmin, LIU Zhibo, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery[J]. Advanced Materials, 2015, 28(3): 510-517. |
31 | KANG Joohoon, WELLS S, WOOD J, et al. Stable aqueous dispersions of optically and electronically active phosphorene[J]. Proceedings of the National Academy of Sciences, 2016, 113(42): 11688-11693. |
32 | ZHAO Wancheng, XUE Zhimin, WANG Jinfang, et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27608-27612. |
33 | AMBROSI A, SOFER Z, PUMERA M. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angewandte Chemie International Edition, 2017, 56(35): 10443-10445. |
34 | LI Jing, CHEN Cheng, LIU Shule, et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene[J]. Chemistry of Materials, 2018, 30(8): 2742-2749. |
35 | XU Feng, MA Hongyu, LEI Shuangying, et al. In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene[J]. Nanoscale, 2016, 8(28): 13603-13610. |
36 | SOFER Z, BOUŠA D, LUXA J, et al. Few-layer black phosphorus nanoparticles[J]. Chemical Communication, 2016, 52(8): 1563-1566. |
37 | XU Yanhua, WANG Zhiteng, GUO Zhinan, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229. |
38 | YUAN Yongjun, YANG Shuhui, WANG Pei, et al. Bandgap-tunable black phosphorus quantum dots: visible-light-active photocatalysts[J]. Chemical Communications, 2018, 54(8): 960-963. |
39 | ZHOU Si, LIU Nanshu, ZHAO Jijun. Phosphorus quantum dots as visible-light photocatalyst for water splitting[J]. Computational Materials Science, 2017, 130(1): 56-63. |
40 | LING Xi, HUANG Shengxi, HASDEO E H, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus[J]. Nano Lett., 2016, 16(4): 2260-2267. |
41 | ZHOU Qionghua, CHEN Qian, TONG Yilong, et al. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection[J]. Angewandte Chemie International Edition, 2016, 55(38): 11437-11441. |
42 | FAVRON A, GAUFRES E, FOSSARD F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832. |
43 | ZHOU Wenhua, PAN Ting, CUI Haodong, et al. Rediscovery of black phosphorus: bioactive nanomaterials with inherent and selective chemotherapeutic effects[J]. Angewandte Chemie International Edition, 2018, 58(3): 769-774. |
44 | ZHU Mingshan, OSAKADA Y, KIM Sooyeon, et al. Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution[J]. Applied Catalysis B: Environmental, 2017, 217(15): 285-292. |
45 | ZHANG Zhaocheng, HE Dongyang, LIU Haiyang, et al. Synthesis of graphene/black phosphorus hybrid with highly stable P-C bond towards the enhancement of photocatalytic activity[J]. Environmental Pollution, 2019, 245(1): 950-956. |
46 | ZHU Xianjun, ZHANG Taiming, JIANG Daochuan, et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules[J]. Nature Communications, 2018, 9(1): 4177. |
47 | KUNTZ K L, WELLS R A, HU Jun, et al. Control of surface and edge oxidation on phosphorene[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9126-9135. |
48 | LEI Wanying, ZHANG Tingting, LIU Ping, et al. Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids[J]. ACS Catalysis, 2016, 6(12): 8009-8020. |
49 | HE Chengli, QIAN Heming, LI Xiazhang, et al. Visible-light-driven CeO2/black phosphorus heterostructure with enhanced photocatalytic performance[J]. Journal of Materials Science: Materials in Electronics, 2018, 30(20): 593-599. |
50 | HU Jun, GUO Zhenkun, MCWILLIAMS P E, et al. Band gap engineering in a 2D material for solar-to-chemical energy conversion[J]. Nano Lett., 2016, 16(1): 74-79. |
51 | TIAN Bin, TIAN Bining, SMITH B, et al. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4345-4350. |
52 | CAI Xiaoyan, MAO Liang, YANG Songqiu, et al. Ultrafast charge separation for full solar spectrum-activated photocatalytic H2 generation in a black phosphorus-Au-CdS heterostructure[J]. ACS Energy Letters, 2018, 3(4): 932-939. |
53 | JIN Chen, ZHENG Renyang, GUO Ying, et al. Hydrothermal synthesis and characterization of phosphorous-doped TiO2 with high photocatalytic activity for methylene blue degradation[J]. Journal of Molecular Catalysis A: Chemical, 2009, 313(1): 44-48. |
54 | Hyun Uk LEE, Soon Chang LEE, Jonghan WON, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts[J]. Scientific Reports, 2015, 5(1): 86-91. |
55 | SHEN Zhurui, SUN Shoutian, WANG Wanjun, et al. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(7): 3285-3288. |
56 | FENG Rongjuan, LEI Wanying, Xinyu SUI, et al. Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visible and NIR light photoactivity[J]. Applied Catalysis B: Environmental, 2018, 23(8): 444-453. |
57 | WEN Min, WANG Jiahong, TONG Ruifeng, et al. A low-cost metal-free photocatalyst based on black phosphorus[J]. Advanced Science, 2019, 6(1): 1801321. |
58 | QIU Pengxiang, XU Chenmin, ZHOU Ning, et al. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2018, 221(1): 27-35. |
59 | ZHENG Yun, YU Zihao, Honghui OU, et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation[J]. Advanced Functional Materials, 2018, 28(10): 1705407. |
60 | LIU Fucai, ZHU Chao C, YOU Lu, et al. 2D black phosphorus/SrTiO3 based programmable photoconductive switch[J]. Advanced Materials, 2016, 28(35): 7768-7773. |
61 | DENG Yexin, LUO Zhe, CONRAD N, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction P-N diode[J]. ACS Nano, 2014, 8(8): 8292-8299. |
62 | VITI L, HU Jin, COQUILLAT D, et al. Heterostructured hBN-BP nanodetectors at terahertz frequencies[J]. Advanced Materials, 2016, 28(34): 7390-7396. |
63 | WANG Lian, XU Qingchi, XU Jun, et al. Synthesis of hybrid nanocomposites of ZIF-8 with two-dimensional black phosphorus for photocatalysis[J]. RSC Advances, 2016, 6(73): 69033-69039. |
64 | LI Xiazhang, LI Feihong, LU Xiaowang, et al. Black phosphorus quantum dots/attapulgite nanocomposite with enhanced photocatalytic performance[J]. Functional Materials Letters, 2017, 10(6): 1750078. |
65 | WANG Xin, ZHOU Benqing, ZHANG Youming, et al. In-situ reduction and deposition of Ag nanoparticles on black phosphorus nanosheets co-loaded with graphene oxide as a broad spectrum photocatalyst for enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2018, 769(1): 316-324. |
66 | WANG Xin, XIANG Yuren, ZHOU Benqing, et al. Enhanced photocatalytic performance of Ag/TiO2 nanohybrid sensitized by black phosphorus nanosheets in visible and near-infrared light[J]. Journal of Colloid and Interface Science, 2019, 534(1): 1-11. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[5] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[6] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[7] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[8] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[9] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[10] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[11] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[12] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[13] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[14] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[15] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |