化工进展 ›› 2021, Vol. 40 ›› Issue (2): 1025-1034.DOI: 10.16085/j.issn.1000-6613.2020-0627
罗艳红1,2(), 岳秀萍1(), 姜悦如2, 赵博玮1, 高艳娟1, 段燕青1
收稿日期:
2020-04-21
修回日期:
2020-05-11
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
岳秀萍
作者简介:
罗艳红(1988—),女,博士研究生,研究方向为有机污染物的高效降解与资源化利用。E-mail:基金资助:
Yanhong LUO1,2(), Xiuping YUE1(), Yueru JIANG2, Bowei ZHAO1, Yanjuan GAO1, Yanqing DUAN1
Received:
2020-04-21
Revised:
2020-05-11
Online:
2021-02-05
Published:
2021-02-09
Contact:
Xiuping YUE
摘要:
吲哚散发粪便恶臭气味,广泛存在于焦化、染料、化工、制药和农药等工业废水中。由于其特殊的双环稠合结构,靠传统的生物水解断环提高吲哚的降解效果难以为继。本文全面介绍了吲哚的来源、毒性、危害及传统生物降解技术的缺陷,特别论述了高级氧化法(AOPs)中·OH的形成反应及降解吲哚的作用机理。传统AOPs能够高效降解吲哚,但价格昂贵,操作复杂,且使用剂量常受到其他物质的干扰,易引入新的污染物,难以在大规模的水处理工程中应用。因此,认为将AOPs预氧化与生物处理技术进行高效耦合是降解吲哚经济有效的办法。本文最后介绍了硫酸根自由基的高级氧化技术(SR-AOPs)耦合厌氧生物技术降解吲哚的研究及其优点。这些研究对丰富AOPs耦合生物处理技术理论、含氮杂环污染物高效降解及资源化利用有一定的参考价值。
中图分类号:
罗艳红, 岳秀萍, 姜悦如, 赵博玮, 高艳娟, 段燕青. 高级氧化技术降解吲哚的研究进展[J]. 化工进展, 2021, 40(2): 1025-1034.
Yanhong LUO, Xiuping YUE, Yueru JIANG, Bowei ZHAO, Yanjuan GAO, Yanqing DUAN. Recent progress of advanced oxidation processes in indole degradation[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1025-1034.
1 | YUANL G, LIU J B, XIAO X G. Biooxidation of indole and characteristics of the responsible enzymes[J]. African Journal of Biotechnology, 2011, 10 (86): 19855-19863. |
2 | 马桥. 吲哚好氧转化微生物群落结构及功能基因解析[D]. 大连: 大连理工大学, 2017. |
MA Q. Microbial communities and functional genes of indole aerobic biotransformation[D]. Dalian: Dalian University of Technology, 2017. | |
3 | LEE J H, WOOD T K, LEE J. Roles of indole as an interspecies and interkingdom signaling molecule[J]. Trends Microbiology,2015, 23: 707-718. |
4 | 杨冰玉, 林宇星, 戴春晓, 等. Alcaligenes sp. YBY降解吲哚的特性研究[J]. 环境科学与技术, 2018, 41(12): 7-12. |
YANG B Y, LIN Y X, DAI C X, et al. Characterization of an indole-degrading bacterium Alcaligenes sp.YBY[J]. Environmental Science and Technology, 2018, 41(12): 7-12. | |
5 | 贾斌, 马养民, 陈镝, 等. 天然产物吲哚二酮哌嗪生物碱的结构及生物活性[J]. 化学进展, 2018, 30(8): 31-45. |
JIA B, MA Y M, CHEN D, et al. Studies on structure and biological activity of indole diketopiperazine alkaloids[J]. Progress in Chemistry, 2018, 30(8): 31-45. | |
6 | BOTALOVA O, SCHWARZBAUER J, FRAUENRATH T, et al. Identification and chemical characterization of specific organic constituents of petrochemical effluents[J]. Water Research, 2009, 43(15): 3797-3812. |
7 | LIN J, AOLL J, NICALSS Y, et al. Qualitative and quantitative analysis of volatile constituents from latrines[J]. Environmental Science and Technology, 2013, 47 (14): 7876-7882. |
8 | YAO Q, XU L, HAAN Z, et al. Production of indoles via thermo-catalytic conversion and ammonization of bioderived furfural[J]. Chemical Engineering Journal, 2015, 280: 74-81. |
9 | COOPER C D, GODLEWSKI V J, HANSON R, et al. Odor investigation and control at a WWTP in Orange County, Florida[J]. Environmental Progress, 2001, 20: 133-143. |
10 | MCCOMBS N L, MORENO C T, CAREY L M, et al. Interaction of azole-based environmental pollutants with the coelomic hemoglobin from amphitrite ornata: a molecular basis for toxicity[J]. Biochemistry, 2017, 56 (17): 2294-2303. |
11 | SEELAND A, OETKEN M, KISS A, et al. Acute and chronic toxicity of benzotriazoles to aquatic organisms[J]. Environmental Science and Pollution Research, 2012, 19: 1781-1790. |
12 | JOSHI D R, ZHANG Y, ZHANG H, et al. Characteristics of microbial community functional structure of a biological coking wastewater treatment system[J]. Journal of Environmental Sciences, 2018, 30(1): 105-115. |
13 | LI G, NANDGAONKAR A G, WANG Q, et al. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: evaluation for photo- and bio-catalytic dye degradation[J]. Journal of Membrane Science, 2017, 525: 89-98. |
14 | QIN B, ZHU G, GAO G, et al. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management[J]. Environmental Management, 2010, 45: 105-112. |
15 | ZHANG X J, ZHANG Y, WANG H, et al. Emergent drinking water treatment for taste and odor control in Wuxi city water pollution incident[J]. Water Wastewater Engineering, 2007, 9: 4-8. |
16 | GAO Y, WANG G, ZHOU A, et al. Effect of nitrate on indole degradation characteristics and methanogenesis under mixed denitrification and methanogenesis culture[J]. Biochemical Engineering Journal, 2019, 145: 33-41. |
17 | MA Q, LIU Z, YANG B, et al. Characterization and functional gene analysis of a newly isolated indole-degrading bacterium Burkholderia sp. IDO3[J]. Journal of Hazardous Materials, 2018, 367: 144-151. |
18 | 沈娥. sp Cupriavidus.SHE的筛选及特性研究[D].大连:大连理工大学, 2015. |
SHEN E. Isolation and characteristics of Cupriavidus sp. SHE[D]. Dalian: Dalian University of Technology, 2015. | |
19 | 戴春晓, 杨婧, 房皓, 等. 一株新颖的Providencia sp.菌降解吲哚及合成靛蓝的特性研究[J].环境科学学报, 2018, 38(9): 211-217. |
DAI C X, YANG J, FANG H, et al Degradation characteristics of indole and biosynthesis of indigo by a novel bacteria Providencia sp.[J] Acta Scientiae Circumstantiae, 2018, 38(9): 211-217. | |
20 | 程静, 蔡伊秋, 张超杰, 等. 氮杂环化合物喹啉在缺氧条件下降解的影响因素[J]. 同济大学学报(自然科学版), 2009, 37(9): 1207-1211. |
CHENG J, CAI Y Q, ZHANG C J, et al. Influence factors of fitrogenous heterocyclic compound-quinoline degradation under anoxic conditions[J]. Journal of Tongji University(Natural Science Edition), 2009, 37(9): 1207-1211. | |
21 | 夏溪, 张晓君, 冯虎元, 等. 反硝化反应器喹啉降解相关基因多样性与定量分析[J]. 微生物学报, 2010, 50 (12): 1613-1618. |
XIA X, ZHANG X J, FENG H Y. Diversity and quantification analysis of functional genes in a lab scale denitrifying quinoline-degrading bioreactor[J]. Acta Microbiologica Sinica, 2010, 50 (12): 1613-1618. | |
22 | CAI Q Q, WU M Y, LI R, et al. Potential of combined advanced oxidation—Biological process for cost-effective organic matters removal in reverse osmosis concentrate produced from industrial wastewater reclamation: Screening of AOP pre-treatment technologies[J]. Chemical Engineering Journal, 2020, 389(1): 932-939. |
23 | WISZNIOWSKI J, ROBERT D, S-GORSKA J, et al. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts[J]. Applied Catalysis B: Environmental, 2004, 53: 127-137. |
24 | BOHDZIEWICA J, BODZEK M, GORSKA J. Application of pressure-driven membrane techniques to biological treatment of landfill leachate[J]. Process Biochemistry, 2001, 36(7): 641-646. |
25 | HUANG X, WANG X M. Toxicity change patterns and its mechanism during the degradation of nitrogen-heterocyclic compounds by O3/UV[J]. Chemosphere, 2007, 69: 747-754. |
26 | CHEN X, CHEN G. Anodic oxidation of Orange Ⅱ on Ti/BDD electrode: variable effects[J]. Separation and Purification Technology, 2006, 48: 45-49. |
27 | AQUINO J M, ROCHA-FILHO R C, BOCCHI N, et al. Electrochemical degradation of the Acid Blue 62dye on a β-PbO2 anode assessed by the response surface methodology[J]. The Journal of Applied Electrochemistry, 2010, 40: 1751-1757. |
65 | BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution [J]. J. Phys. Chem. Ref. Data, 1988, 17 (2): 513-866. |
66 | DEVEAU P A, ARSAC F, FERRONATO C, et al. Different methods in TiO2 photodegradation mechanism studies: gaseous and TiO2-adsorbed phases[J]. Journal of Hazardous Materials, 2007, 144: 692-697. |
28 | BALCI B, OTURAN N, CHERRIER R, et al. Degradation of atrazine in aqueous medium by electrocatalytically generated hydroxyl radicals. A kinetic and mechanistic study[J]. Water Research, 2009, 43: 1924-1934. |
29 | PANIZZA M, CERISOLA G. Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009, 43: 339-344. |
30 | EL-GHENYMY A, GARRIDO J A, CENTELLAS F, et al. Electro-Fenton and photoelectro-Fenton degradation of sulfanilic acid using a boron-doped diamond anode and an air diffusion cathode[J]. The Journal of Physical Chemistry A, 2012, 116: 3404-3412. |
31 | GARCIA-SEGURA S, GARRIDO J A, RODRIGUEZ R M, et al. Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes[J]. Water Research, 2012, 46: 2067-2076. |
32 | CHEN Y, LI H Y, LIU W J, et al. Electrochemical degradation of nitrobenzene by anodic; oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode[J]. Chemosphere, 2014, 113: 48-55. |
33 | 程迪, 赵馨, 邱峰, 等. 电化学氧化处理难降解废水的研究进展[J]. 化学与生物工程, 2011, 28 (4): 1-5. |
CHENG D, ZHAO X, QIU F, et al. Research progress on electrochemical oxidation treatment in refractory wastewater[J]. Chemistry & Bioengineering, 2011, 28 (4): 1-5. | |
34 | 邢剑飞, 王裙, 李侃, 等. 不同基底BDD电极对模拟染料废水的降解脱色试验[J]. 净水技术, 2013, 32 (1): 55-59. |
XING J F, WANG Q, LI K, et al. Experiment of degradation and decolouration for simulated dye wastewater treatment with different kinds of substrates based boron doped diamond (BDD) thin-film electrode[J]. Water Purification Technology, 2013, 32 (1): 55-59. | |
35 | JEONG J, KIM C, YOON J. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes[J]. Water Research, 2009, 43: 895-901. |
36 | PANIZZZA M, CERISOLA G. Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009,43: 339-344. |
37 | 王春荣, 齐迹, 吴婷婷, 等. 阳极电化学氧化处理吲哚废水的实验研究[J]. 应用化工, 2016, 45(7): 1232-1237. |
WANG C R, QI J, WU T T, et al. Advanced treatment for indole wastewater by electrochemical technology using BDD anodes[J]. Applied Chemical Industry, 2016, 45 (7): 1232-1237. | |
38 | KAICHOUH G, OTURAN N, OTURAN M, et al. Mineralization of herbicides imazapyr and imazaquin in aqueous medium by Fenton, photo-Fenton and electro-Fenton processes[J]. Environmental Technology, 2008, 29(5): 489-496. |
39 | 吴高明, 袁松虎, 黄艳超, 等. 基于阳极氧化和电芬顿法的吲哚降解机理研究[J]. 华中科技大学学报(自然科学版), 2007, 35(4): 126-128. |
WU G M, YUAN S H, HUANG Y C. Degradation mechanism of indole by anodic oxidation and electro-Fenton[J]. J.Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2007: 126-128. | |
40 | IGIESIAS O, DIOS M A F, TAVARES T, et al. Heterogeneous electro-Fenton treatment: preparation, characterization and performance in groundwater pesticide removal[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 276-282. |
41 | ROSALES E, IGLESIAS O, PAZOS M. Decolourisation of dyes under electro-Fenton process using fealginate gel beads[J]. Journal of Hazardous Materials, 2012, 213/214: 369-377. |
42 | IGLESIAS O, GOMEZ J, PAZOS M. Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads[J]. Applied Catalysis B: Environmental, 2014, 144: 416-424. |
43 | HAMMOUDA S B, FOURCADE F, ASSADI A, et al. Effective heterogeneous electro-Fenton process for the degradation of a malodorous compound: indole using iron loaded alginate beads as a reusable catalyst[J]. Applied Catalysis B: Environmental, 2016, 182: 47-58. |
44 | OLVERA-VARGAS H, OTURAN N, OTURAN M A. Electro-Fenton and solar photoelectro-Fenton treatments of the pharmaceutical ranitidine in pre-pilot flow plant scale[J]. Separation and Purification Technology, 2015, 146: 127-135. |
45 | BRILLAS E. Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton treatments of organics in waters using a boron-doped diamond anode: a review[J]. Journal of the Mexican Chemical Society, 2014, 58: 239-255. |
46 | MOREIRA F C, GARCIA-SEGURA S, BOAVENTURA R A R, et al. Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode[J]. Applied Catalysis B: Environmental, 2014, 160/161: 492-505. |
47 | FLORENZA X, SOLANO A M S, CENTELLAS F, et al. Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products[J]. Electrochimica Acta, 2014, 142: 276-288. |
48 | MOREIRA F C, GARCIA-SEGURA S, VILAR V J, et al. Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes[J]. Applied Catalysis B: Environmental, 2013, 142/143(10): 877-890. |
49 | SUSHMA, KUMARI M, SAROHA A K. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: a review[J]. Journal of Environmental Management, 2018, 228(15): 169-188. |
50 | LUAN M, JING G, PIAO Y, et al. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation[J]. Arabian Journal of Chemistry, 2012, 45(S1): 769-S776. |
51 | ZHOU L, CAO H, DESCORME C, et al. Wet air oxidation of indole, benzopyrazole, and benzotriazole: effects of operating conditions and reaction mechanisms[J]. Chemical Engineering Journal, 2018, 338: 496-503. |
52 | WANG Y M, SUN W J, WEI H Z. Extended study of ammonia conversion to N2 using a Ru/0.2TiZrO4 catalyst via catalytic wet air oxidation[J]. Catalysis Science & Technology, 2016, 6(15): 6144-6151. |
53 | LEVEC J, PINTAR A. Catalytic wet-air oxidation processes: a review[J]. Catalysis Today, 2007, 124: 172-184. |
54 | GUO J, Al-DAHHAN M. Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst[J]. Chemical Engineering Science, 2005, 60(3): 735-746. |
55 | YANG B, YING G G, ZHAO J L, et al. Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate () treatment of secondary wastewater effluents[J]. Water Research, 2012, 46 (7): 2194-2204. |
56 | BARISCI S, ULU F, SILLANPAA M. Evaluation of flurbiprofen removal from aqueous solution by electrosynthesized ferrate () ion and electrocoagulation process[J]. Chemical Engineering Journal, 2015, 262: 1218-1225. |
57 | LAN B, WANG Y, WANG X, et al. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292: 389-397. |
58 | LIU Y, WANG L, Wang X, et al. Highly efficient removal of trace thallium from contaminated source waters with ferrate: role of in situ formed ferric nanoparticle[J]. Water Research, 2017, 124: 149-157. |
59 | YU W, YANG Y, GRAHAM N. Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment[J]. Chemical Engineering Journal, 2016, 298: 234-242. |
60 | JIANG Y, GOODWILL J E, TOBIASON J E. Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors[J]. Water Research, 2016, 96: 114-125. |
61 | BARISCI S, DIMOGLO A. Review on the stability of ferrate () species in aqueous medium and oxidation of pharmaceuticals and personal care products (PPCPs) by ferrate (): identification of transformation by-products[J]. ACS Publications, 2016: 287-335. |
67 | CORONADO J M, SORIAESR J. Study of the initial stages of the photocatalytic oxidation of toluene over TiO2 powders[J]. Catalysis Today, 2007, 123: 37-41. |
68 | 杜建康, 张林生, 夏明芳.TiO2-硅藻土复合光催化剂降解二甲基甲酰胺研究[J]. 工业用水与废水, 2007, 38(6): 38-40. |
62 | LIU Y, WANG L, HUANG Z, et al. Oxidation of odor compound indole in aqueous solution with ferrate (): kinetics, pathway, and the variation of assimilable organic carbon[J]. Chemical Engineering Journal, 2017, 331: 31-38. |
63 | KUTTASSERY F, MATHEW S, REMELLO S N,et al. Alternative route to bypass the bottle-neck of water oxidation: two-electron oxidation of water catalyzed by earth-abundant metalloporphyrins[J]. Coordination Chemistry Reviews, 2018, 377(15): 64-72. |
68 | DU J K, ZHANG L S, XIA M F. Degradation of dimethylformamide by TiO2-diatomite composite photocatalyst[J].Industrial Water & Wastewaterr, 2007, 38(6): 38-40. |
69 | 王景芸, 侯明波, 于万喜. 微波辅助紫外光催化氧化降解吲哚的研究[J]. 工业用水与废水, 2010, 41(1): 43-46. |
64 | SONJA M K, JELENA B P, ANA P B, et al. Photo-redox reactions of indole and ferric iron in water[J]. Applied Catalysis B: Environmental, 2016, 185: 174-180. |
69 | WANG J Y, HOU M B, YU W X. Degradation of indole by microwave assisted UV-catalyzed oxidation[J]. Industrial Water & Wastewater, 2010, 41(1): 43-46. |
70 | MERABET S, BOUZAZA A, WOLBERT D. Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process——influence of some operating parameters[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1244-1249. |
71 | HAMMOUDA S B, ADHOUM N, MONSER L. Chemical oxidation of a malodorous compound, indole, using iron entrapped in calcium alginate beads[J]. Journal of Hazardous Materials, 2016, 301: 350-361. |
72 | RTIMI S, ROBYR M, PULGARIN C, et al. A new perspective in the use of feox-TiO2 photocatalytic films: indole degradation in the absence of Fe-leaching[J]. Journal of Catalysis, 2016, 342: 184-192. |
73 | QAMAR M, MUNEER M. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide[J]. Journal of Hazardous Materials, 2005, 120: 219-227. |
74 | RAJESWARI R, KANMABI S. A study on synergistic effect of photocatalytic ozonation for carbaryl degradation[J]. Desalination, 2009, 242: 277-285. |
75 | LEE Y, GUNTEN U V. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate Ⅵ, and ozone) and non-selective oxidants (hydroxyl radical)[J]. Water Research, 2010, 44: 555-566. |
76 | ZHUANG H, HAN B, HOU S, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts[J]. Bioresource Technology, 2014, 166: 178-186. |
77 | ZHANG T, LU J, MA J. Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water[J]. Water Research, 2008, 42: 1563-1570. |
78 | HAO Z, WENCHENG M, HONGJUN H, et al. Degradation characteristics of two typical n-heterocycles in ozone process: efficacy, kinetics, pathways, toxicity and its application to real biologically pretreated coal gasification wastewater[J]. Chemosphere, 2018, 209: 319-327. |
79 | 于洋. 臭氧氧化去除水中吲哚类含氮污染物实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
YU Y. Study on the degradation of indole and indole-like nitrogen-containing pollutants in water by ozone oxidation[D]. Harbin: Harbin Institute of Technology, 2012. | |
80 | CHRISTOPHORIDIS C, NIKA M C, AALIZADEH R. Ozonation of ranitidine: effect of experimental parameters and identification of transformation products[J]. Science of the Total Environment, 2016, 170: 557-558. |
81 | FENG M, YAN L, ZHANG X, et al. Fast removal of the antibiotic flumequine from aqueous solution by ozonation: influencing factors, reaction pathways, and toxicity evaluation[J]. Science of the Total Environment, 2016, 541: 167-175. |
82 | LOPPINET-SERANI A, AYMONIER C, CANSELL F. Current and foreseeable applications of supercritical water for energy and the environment[J]. ChemSusChem, 2008, 1: 486-503. |
83 | ZHANG J, WENG X, HAN Y, et al. The effect of supercritical water on coal pyrolysis and hydrogen production: a combined ReaxFF and DFT study[J]. Fuel, 2013, 108: 682-690. |
84 | CAO C, GUO L, YIN J, et al. Supercritical water gasification of coal with waste black liquor as inexpensive additives[J]. Energy Fuels, 2015, 29: 384-391. |
85 | GUO Y, WANG C M, HUELSMAN C M. Kinetic model for reactions of indole under supercritical water gasification conditions[J]. Chemical Engineering Journal, 2014, 241: 327-335. |
86 | GUO Y, WANG S, YEH T. Catalytic gasification of indole in supercritical water[J]. Applied Catalysis B: Environmental, 2015, 166: 202-210. |
87 | LIU S, JIN H, WEI W, et al. Gasification of indole in supercritical water: nitrogen transformation mechanisms and kinetics[J]. International Journal of Hydrogen Energy, 2016, 41(36): 15985-15997. |
88 | 章晋门, 陈泉源, 杨慧敏. 过硫酸盐活化方式与氧化降解有机物效能及其在污染场地修复中的应用[J]. 化工进展, 2020, 39(1): 1-13. |
ZHANG J M, CHEN Q Y, YANG H M. Influence of persulfate activation on organic pollutant degradation and application in remediation of contaminated land[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 1-13. | |
89 | DAVIDIDOU K, MONTEAGUDO J M, CHATZISYMEON E, et al. Degradation and mineralization of antipyrine by UV-A LED photo-Fenton reaction intensified by ferrioxalate with addition of persulfate [J]. Separation and Purification Technology, 2017, 172: 227-235. |
90 | VELOSAA C, NASCIMENTO C A O. Evaluation of sulfathiazole degradation by persulfate in Milli-Q water and in effluent of a sewage treatment plant[J]. Environmental Science and Pollution Research, 2016: 1-8. |
91 | ZHU C, FANG G, DIONYSIOU D D, et al. Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: a mechanistic study [J]. Journal of Hazardous Materials, 2016, 316: 232-241. |
92 | JI Y, FERRONATO C, SALVADOR A. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotic[J]. Science of the Total Environment, 2014, 472(8): 800-808. |
93 | 康达. 零价铁强化厌氧-MFC耦合降解典型含氮杂环化合物效果探究[D]. 太原: 太原理工大学, 2018. |
KANG D. The study of zero valent iron intensified anaerobic MFC coupling system on the degradation of typical nitrogen heterocyclic compounds[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
94 | WANG S F, ZHOU A J, ZHANG J G. Enhanced quinoline removal by zero-valent iron-coupled novel anaerobic processes: performance and underlying function analysis[J]. RSC Advance, 2019, 9(3): 1176-1186. |
[1] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[2] | 付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
[3] | 伊学农, 李京梅, 高玉琼. 紫外-高铁酸盐体系氧化降解水中的萘普生[J]. 化工进展, 2022, 41(8): 4562-4570. |
[4] | 吕莹, 胡学武, 陈素素, 刘兴宇, 陈勃伟, 张明江. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262. |
[5] | 周永泉, 张艾, 刘亚男, 王铮. 等离子体射流耦合活性碳纤维去除水中糖皮质激素[J]. 化工进展, 2022, 41(4): 2209-2215. |
[6] | 徐铭骏, 郭兆春, 李立, 朱紫琦, 张倩, 洪俊明. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2): 1043-1053. |
[7] | 翟重渊, 赵丹荻, 何亚鹏, 黄惠, 陈步明, 郭忠诚. 掺硼金刚石阳极电催化降解新兴抗生素类污染物研究进展[J]. 化工进展, 2022, 41(12): 6615-6626. |
[8] | 王吉坤, 李阳, 陈贵锋, 刘敏, 寇丽红, 王琦, 何毅聪. 臭氧催化氧化降解煤化工高盐废水有机物的机理[J]. 化工进展, 2022, 41(1): 493-502. |
[9] | 曾尚升, 杨宇成, 张娜, 张学勤, 叶静, 黄雅燕, 肖美添. 旋转微气泡反应器强化臭氧降解水中对硝基苯酚[J]. 化工进展, 2021, 40(7): 4091-4099. |
[10] | 刘银领, 范兵强, 张喆, 郑诗礼, 张洋. 涡轮自吸桨强化气液混合及氧化反应速率[J]. 化工进展, 2021, 40(12): 6620-6628. |
[11] | 杨硕, 余薇薇, 杨伦, 杜邦昊, 谢明原, 赵晨菊, 万巧玲, 潘伟亮. 纳米零价铁降解水中17β-雌二醇的作用机制[J]. 化工进展, 2020, 39(9): 3826-3834. |
[12] | 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3307. |
[13] | 赵媛媛,刘文静,董培,张亮,杨政伟,赵朝成. 聚苯胺中间层改性Ti/PbO2电极的制备及其降解性能[J]. 化工进展, 2019, 38(12): 5478-5486. |
[14] | 黄智辉, 纪志永, 陈希, 郭小甫, 王士钊, 袁俊生. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(05): 2461-2470. |
[15] | 张岩, 李渊, 赵立国, 谭小耀, 覃环, 王秋月, 黄从付. SAPO-18分子筛的快速合成及其甲醇制烯烃催化性能[J]. 化工进展, 2018, 37(05): 1815-1822. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |