化工进展 ›› 2020, Vol. 39 ›› Issue (12): 4856-4876.DOI: 10.16085/j.issn.1000-6613.2020-0942

• 专栏:化工过程强化 • 上一篇    下一篇

光(电)催化氮气还原合成氨研究进展

任晓玲(), 严孝清, 龚湘姣, 吴志强, 杨伯伦, 魏进家, 杨贵东()   

  1. 西安交通大学化学工程与技术学院工业催化研究所,陕西省能源化工过程强化重点实验室,陕西 西安 710049
  • 出版日期:2020-12-05 发布日期:2020-12-02
  • 通讯作者: 杨贵东
  • 作者简介:任晓玲(1992—),女,博士研究生,研究方向为光催化合成氨技术。E-mail:xiaolingren92@163.com
  • 基金资助:
    国家自然科学基金石油化工联合基金项目(U1862105)

Overview on photo(electro)catalytic nitrogen fixation for ammonia synthesis

Xiaoling REN(), Xiaoqing YAN, Xiangjiao GONG, Zhiqiang WU, Bolun YANG, Jinjia WEI, Guidong YANG()   

  1. Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Shanxi Key Laboratory of Energy Chemical Process Intensifcation, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Online:2020-12-05 Published:2020-12-02
  • Contact: Guidong YANG

摘要:

光(电)催化氮气还原技术利用天然太阳能作为能源,具有成本低、反应条件温和等众多优势,可解决传统工业合成氨Haber-Bosch工艺的高能耗以及高CO2排放等问题,被认为是目前最具前景的新兴合成氨技术之一。由于氮气为非极性分子,在水中溶解度极低,且本身呈现化学惰性,难以被活化,使得整体的氮气还原转化合成氨效率较低。同时,光生载流子的利用率也显著影响整体的催化效率。为此,光(电)催化氮气还原技术的关键在于催化剂的设计和催化反应体系的优化。本文在介绍光(电)催化氮气还原合成氨反应过程以及机理的基础上,主要从促进氮气溶解扩散、氮气吸附和活化以及强化载流子分离和传输等具体反应过程出发,重点综述近期国内外在光(电)催化氮气还原合成氨领域基于上述反应过程强化的最新研究现状。最后,指出了目前光(电)催化氮气还原合成氨研究领域面临的挑战,并对此领域的未来发展趋势进行了分析与展望。

关键词: 光(电)催化, 氮气, 还原, 氨, 催化剂, 活化, 反应过程

Abstract:

Photo(electro)catalytic nitrogen reduction technology has many advantages over the traditional, well-established Haber-Bosch process for nitrogen fixation, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. These advantages result in the use of the photo(electro)catalysis for nitrogen fixation being of lower energy cost and lower CO2 emissions than that of the Haber-Bosch method, making it one of the most promising emerging synthetic ammonia technologies. The key to photo(electro)catalytic nitrogen fixation lies in the design of the catalyst and the optimization of the catalytic reaction system. Based on the fact that nitrogen is a non-polar molecule, has a low water solubility, and is chemically inert, it is difficult to be activated, and so the overall efficiency of nitrogen reduction to ammonia is relatively low. Increasing the utilization rate of photogenerated carriers also significantly affects the overall catalytic efficiency. This article introduces the reaction process and mechanism of photo(electro)catalytic nitrogen reduction to ammonia, mainly from the specific reaction processes of promoting the dissolution and diffusion of nitrogen, adsorption and activation of nitrogen, and enhancement of the separation and transmission of photogenerated charge carriers. Moreover, the latest research status based on the enhancement of the above reaction process in the field of ammonia synthesis are summarized. Finally, some deficiencies in the current research of photo(electro)catalytic ammonia synthesis are highlighted, and the future development trends in this field are analyzed and assessed.

Key words: photo(electro)catalytic, nitrogen, reduction, ammonia, catalyst, activation, reaction process

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn