1 | WANG Lu, XIA Meikun, WANG Hong, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074. | 2 | GUO Jianping, CHEN Ping. Catalyst: NH3 as an energy carrier[J]. Chem., 2017, 3(5): 709-712. | 3 | RITTER S K. Iron’s star rsing[J]. Chemical & Engineering News, 2008, 86: 53-57. | 4 | JACKSON R B, CANADELL J G, LE QUERE C, et al. Reaching peak emissions[J]. Nature Climate Change, 2016, 6(1): 7-10. | 5 | MICHALSKY R, PARMAN B J, AMANOR-BOADU V, et al. Solar thermochemical production of ammonia from water, air and sunlight: thermodynamic and economic analyses[J]. Energy, 2012, 42(1): 251-260. | 6 | MEDFORD A J, HATZELL M. Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook[J]. ACS Catalysis, 2017, 7(4): 2624-2643. | 7 | SCHRAUZER G N, GUTH T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. Journal of the American Chemical Society, 1977, 99(22): 7189-7193. | 8 | LI Xiaoman, SUN Xiang, ZHANG Ling, et al. Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4[J]. Journal of Materials Chemistry A, 2018, 6: 3005-3011. | 9 | MASTRORILLI P, NOBILE C F, PAOLILLO R, et al. Catalytic Pauson-Khand reaction in ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2004, 214(1): 103-106. | 10 | JACQUEMIN J, HUSSON P, MAJER V, et al. Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Fluid Phase Equilibria, 2006, 240(1): 87-95. | 11 | STEVANOVIC S, GOMES M F C. Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate(eFAP) ionic liquids[J]. The Journal of Chemical Thermodynamics, 2013, 59: 65-71. | 12 | ZHOU Fengling, AZOFRA L M, ALI M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2519-2520. | 13 | KANG C S M, ZHANG Xinyi, MACFARLANE D R. Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility[J]. The Journal of Physical Chemistry C, 2018, 122(43): 24550-24558. | 14 | ALI M, ZHOU Fengling, CHEN Kun, et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon[J]. Nature Communication, 2016, 7: 11335. | 15 | ZHAO Yufei, ZHAO Yunxuan, WATERHOUSE G I N, et al. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation[J]. Advanced Materials, 2017, 29(42): 1703828. | 16 | LI Hao, SHANG Jian, AI Zhihui, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. Journal of the American Chemical Society, 2015, 137(19): 6393-6399. | 17 | LIU Mingjie, WANG Shutao, JIANG Lei. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2(7): 17036. | 18 | CAI Zhao, ZHANG Yusheng, ZHAO Yuxin, et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes[J]. Nano Research, 2019, 12(2): 345-349. | 19 | SHI Run, ZHAO Yunxuan, WATERHOUSE G I N, et al. Defect engineering in photocatalytic nitrogen fixation[J]. ACS Catalysis, 2019, 9(11): 9739-9750. | 20 | 肖瑶, 胡文娟, 任衍彪, 等. 仿生光电催化氮气还原[J]. 化学进展, 2018, 30(4): 325-337. | 20 | XIAO Yao, HU Wenjuan, REN Yanbiao, et al. Bioinspired photo/electrocatalytic N2 fixation[J]. Progress in Chemistry, 2018, 30(4): 325-337. | 21 | BANERJEE A, YUHAS B D, MARGULIES E A, et al. Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels[J]. Journal of the American Chemical Society, 2015, 137(5): 2030-2034. | 22 | LIU Jian, KELLEY M S, WU Weiqiang, et al. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(20): 5530-5535. | 23 | BROWN K A, HARRIS D F, WILKER M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352: 448-450. | 24 | HOFFMAN B M, LUKOYANOV D, DEAN D R, et al. Nitrogenase: a draft mechanism[J]. Accounts of Chemical Research, 2013, 46(2): 587-595. | 25 | LING Chongyi, NIU Xianghong, LI Qiang, et al. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. Journal of the American Chemical Society, 2018, 140(43): 14161-14168. | 26 | SPATZAL T, PEREZ K A, EINSLE O, et al. Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase[J]. Science, 2014, 345(6204): 1620-1623. | 27 | SMITH J M, LACHICOTTE R J, PITTARD K A, et al. Stepwise reduction of dinitrogen bond order by a low-coordinate iron complex[J]. Journal of the American Chemical Society, 2001, 123(37): 9222-9223. | 28 | SMITH J M, SADIQUE A R, CUNDARI T R, et al. Studies of low-coordinate iron dinitrogen complexes[J]. Journal of the American Chemical Society, 2006, 128(3): 756-769. | 29 | HU Shaozheng, CHEN Xin, LI Qiang, et al. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis[J]. Applied Catalysis B: Environmental, 2017, 201: 58-69. | 30 | AZOFRA L M, SUN Chenghua, CAVALLO L, et al. Feasibility of N2 binding and reduction to ammonia on Fe-deposited MoS2 2D sheets: a DFT study[J]. Chemistry: a European Journal, 2017, 23: 8275-8279. | 31 | SUN Xiang, JIANG Dong, ZHANG Ling, et al. Enhanced nitrogen photofixation over LaFeO3via acid treatment[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9965-9971. | 32 | LEGARE M A, BELANGER-CHABOT G, DEWHURST R D, et al. Nitrogen fixation and reduction at boron[J]. Science, 2018, 359: 896-900. | 33 | MAO Chengliang, WANG Jiaxian, ZOU Yunjie, et al. Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation[J]. Green Chemistry, 2019, 21(11): 2852-2867. | 34 | BAI Yang, YE Liqun, CHEN Ting, et al. Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27661-27668. | 35 | BAI Yajie, BAI Hongye, QU Konggang, et al. In-situ approach to fabricate BiOI photocathode with oxygen vacancies: understanding the N2 reduced behavior in photoelectrochemical system[J]. Chemical Engineering Journal, 2019, 362: 349-356. | 36 | SHIRAISHI Y, HASHIMOTO M, CHISHIRO K, et al. Photocatalytic dinitrogen fixation with water on bismuth oxychloride in chloride solutions for solar-to-chemical energy conversion[J]. Journal of the American Chemical Society, 2020, 142(16): 7574-7583. | 37 | ZHANG Shuai, ZHAO Yunxuan, SHI Rui, et al. Efficient photocatalytic nitrogen fixation over Cuδ+ modified defective ZnAl layered double hydroxide nanosheets[J]. Advanced Energy Materials, 2020, 10(8): 1901973. | 38 | HIRAKAWA H, HASHIMOTO M, SHIRAISHI Y, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. Journal of the American Chemical Society, 2017, 139(31): 10929-10936. | 39 | ZHAO Yunxuan, ZHAO Yufei, SHI Rui, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700nm[J]. Advanced Materials, 2019, 31(16): 1806482. | 40 | LI Chengcheng, WANG Tuo, ZHAO Zhijian, et al. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes[J]. Angewandte Chemie: International Edition, 2018, 57: 5278-5282. | 41 | HAO Yuchen, DONG Xiaoli, ZHAI Shangru, et al. Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air[J]. Chemistry: a European Journal, 2016, 22(52): 18722-18728. | 42 | CAO Yunhui, HU Shaozheng, LI Fayun, et al. Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light[J]. RSC Advances, 2016, 6(55): 49862-49867. | 43 | HU Shaozheng, LI Yiming, LI Fayun, et al. Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2269-2278. | 44 | SUN Songmei, LI Xiaoman, WANG Wenzhong, et al. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2[J]. Applied Catalysis B: Environmental, 2017, 200: 323-329. | 45 | HE Zhiyi, WANG Yu, DONG Xiaoli, et al. Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation[J]. RSC Advances, 2019, 9: 21646-21652. | 46 | DONG Guohui, Wingkei HO, WANG Chuanyi. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. Journal of Materials Chemistry A, 2015, 3: 23435-23441. | 47 | WU Guang, GAO Yan, ZHENG Binghui. Template-free method for synthesizing sponge-like graphitic carbon nitride with a large surface area and outstanding nitrogen photofixation ability induced by nitrogen vacancies[J]. Ceramics International, 2016, 42: 6985-6992. | 48 | LI Shijun, CHEN Xin, HU Shaozheng, et al. Infrared ray assisted microwave synthesis: a convenient method for large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability[J]. RSC Advances, 2016, 6: 45931. | 49 | XIAO Cailin, ZHANG Ling, WANG Kefu, et al. A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4[J]. Applied Catalysis B: Environmental, 2018, 239: 260-267. | 50 | VAN DER HAM C J M, KOPER M T M, HETTERSCHEID D G H. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 15(43): 5183-5191. | 51 | ZHANG Guoqiang, SEWELL C D, ZHANG Peixin, et al. Nanostructured photocatalysts for nitrogen fixation[J]. Nano Energy, 2020, 71: 104645. | 52 | LI Hao, MAO Chengliang, SHANG Huan, et al. New opportunities opened by nanosheets photocatalysts for efficient N2 fixation[J]. Nanoscale, 2018, 10: 15429-15435. | 53 | LIU Shizhen, WANG Yajun, WANG Shaobin, et al. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6813-6820. | 54 | YANG Jianhua, GUO Yanzhen, JIANG Ruibin, et al. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets[J]. Journal of the American Chemical Society, 2018, 140(27): 8497-8508. | 55 | ZHANG Ning, JALIL A, WU Daoxiong, et al. Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation[J]. Journal of the American Chemical Society, 2018, 140(30): 9434-9443. | 56 | WANG Shengyao, Xiao HAI, DING Xing, et al. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water[J]. Advanced Materials, 2017, 29(31): 1701774. | 57 | WANG Junhui, DING Tao, WU Kaifeng. Charge transfer from N-doped nanocrystals mimicking interme-diate events in multi-electron photocatalysis[J]. Journal of the American Chemical Society, 2018, 140: 7791-7794. | 58 | SUN Songmei, AN Qi, WANG Wenzhong, et al. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots[J]. Journal of Materials Chemistry A, 2017, 5(1): 201-209. | 59 | ALBANESE E, DI VALENTIN C, PACCHIONI G. H2O adsorption on WO3 and WO3-x (001) surfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 23212-23221. | 60 | WANG Fenggong, DI VALENTIN C, PACCHIONI G. Semiconductor-to-metal transition in WO3-x: nature of the oxygen vacancy[J]. Physical Review B, 2011, 84(7): 1032-1036. | 61 | LI Hao, SHANG Jian, SHI Jingu, et al. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway[J]. Nanoscale, 2016, 8: 1986-1993. | 62 | WANG Lifeng, CHEN Zongwei, LIANG Guijie, et al. Observation of a phonon bottleneck in copper-doped colloidal quantum dots[J]. Nature Communication, 2019, 10(1): 4532. | 63 | PALMISANO L, AUGUGLIARO V, SCLAFANI A, et al. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation[J]. The Journal of Physical Chemistry, 1988, 92(23): 6710-6713. | 64 | ILEPERUMA O A, TENNAKONE K, DISSANAYAKE W D D P. Photocatalytic behaviour of metal doped titanium dioxide: studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems[J]. Applied Catalysis, 1990, 62(1): L1-L5. | 65 | ILEPERUMA O A, THAMINIMULLA C T K, KIRIDENA W C B. Photoreduction of N2 to NH3 and H2O to H2 on metal doped TiO2 catalysts (M=Ce, V)[J]. Solar Energy Materials and Solar Cells, 1993, 28(4): 335-343. | 66 | FENG Xiangwen, CHEN Huan, JIANG Fang, et al. Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: oxygen and sulfur co-doping for crystal and electronic structure modulation[J]. Journal of Colloid and Interface Science, 2018, 509: 298-306. | 67 | LI Xiaoman, WANG Wenzhong, JIANG Dong, et al. Efficient solar-sriven nitrogen fixation over carbon-tungstic-acid hybrids[J]. Chemistry, 2016, 22(39): 13819-13822. | 68 | HU Shaozheng, ZHANG Weidong, BAI Jin, et al. Construction of a 2D/2D g-C3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process[J]. RSC Advances, 2016, 6: 25695-25702. | 69 | ZHANG Qian, HU Shaozheng, FAN Zhiping, et al. Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment[J]. Dalton Transactions, 2016, 45: 3497-3505. | 70 | XUE Xiaolin, CHEN Renpeng P, YAN Changzeng, et al. Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr[J]. Nanoscale, 2019, 11(21): 10439-10445. | 71 | SHI Li, LI Zhao, JU Licheng, et al. Promoting nitrogen photofixation over a periodic WS2@TiO2 nanoporous film[J]. Journal of Materials Chemistry A, 2020, 8(3): 1059-1065. | 72 | WANG Yanjuan, WEI Wenshi, LI Mengyan, et al. In situ construction of Z-scheme g-C3N4/Mg1.1Al0.3Fe0.2O1.7 nanorod heterostructures with high N2 photofixation ability under visible light[J]. RSC Advances, 2017, 7: 18099-18107. | 73 | LIANG Hongyu, ZOU He, HU Shaozheng. Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region[J]. New Journal of Chemistry, 2017, 41(17): 8920-8926. | 74 | SHI Anye, LI Huihui, YIN Shu, et al. Photocatalytic NH3 versus H2 evolution over g-C3N4/CsxWO3: O2 and methanol tipping the scale[J]. Applied Catalysis B: Environmental, 2018, 235: 197-206. | 75 | JANET C M, NAVALADIAN S, VISWANATHAN B, et al. Heterogeneous wet chemical synthesis of superlattice-type hierarchical ZnO architectures for concurrent H2 production and N2 reduction[J]. The Journal of Physical Chemistry C, 2010, 114: 2622-2632. | 76 | OSHIKIRI T, UENO K, MISAWA H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation[J]. Angewandte Chemie: International Edition, 2014, 53(37): 9802-9805. | 77 | OSHIKIRI T, UENO K, MISAWA H. Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation[J]. Angewandte Chemie: International Edition, 2016, 55(12): 3942-3946. | 78 | WANG Jiawei, HUA Chenghe, DONG Xiaoli, et al. Synthesis of plasmonic bismuth metal deposited InVO4 nanosheets for enhancing solar light-driven photocatalytic nitrogen fixation[J]. Sustainable Energy & Fuels, 2020, 4: 1855-1862. | 79 | YE Liqun, HAN Chunqiu, MA Zhaoyu, et al. Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light[J]. Chemical Engineering Journal, 2017, 307: 311-318. | 80 | SHIRAISHI Y, CHISHIRO K, TANAKA S, et al. Photocatalytic dinitrogen reduction with water on boron-doped carbon nitride loaded with nickel phosphide particles[J]. Langmuir, 2020, 36(3): 734-741. | 81 | GAO Xiang, AN Li, QU Dan, et al. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst[J]. Science Bulletin, 2019, 64(13): 918-925. | 82 | 闫研. 金属氧化物半导体光催化电子/质子转移机制及光化学行为研究[D]. 镇江: 江苏大学, 2017. | 82 | YAN Yan. Metal oxide semiconductor-based photocatalytic electron/proton transfer mechanism and reaction behavior[D]. Zhenjiang: Jiangsu University, 2017. | 83 | CHEN Chuncheng, SHI Tao, CHANG Wei, et al. Essential roles of proton transfer in photocatalytic redox reactions[J]. ChemCatChem, 2015, 7(5): 724-731. | 84 | XIE Xiaoying, WANG Qian, FANG Weihai, et al. DFT study on reaction mechanism of nitric oxide to ammonia and water on a hydroxylated rutile TiO2(110) surface[J]. The Journal of Physical Chemistry C, 2017, 121: 16373-16380. | 85 | XIE Xiaoying, XIAO Pin, FANG Weihai, et al. Probing photocatalytic nitrogen reduction to ammonia with water on the rutile TiO2(110) surface by first-principles calculations[J]. ACS Catalyst, 2019, 9: 9178-9187. | 86 | ZHAO Yunxuan, SHI Run, BIAN Xuanang, et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates?[J]. Advanced Science, 2019, 6(8): 1802109. | 87 | DICKSON C R, NOZIK A J. Nitrogen fixation via photoenhanced reduction on p-gallium phosphide electrodes[J]. Journal of the American Chemical Society, 1978, 100: 8007-8009. |
|