1 | BONINI C, RIGHI G. Regio- and chemoselective synthesis of halohydrins by cleavage of oxiranes with metal halides[J]. Synthesis, 1994(3): 225-238. | 2 | SMITH J G. Synthetically useful reactions of epoxides[J]. Synthesis, 1984(8): 629-656. | 3 | TANG Bo, DAI Weili, WU Guangjun, et al. Improved postsynthesis strategy to Sn-beta zeolites as lewis acid catalysts for the ring-opening hydration of epoxides[J]. ACS Catalysis, 2014, 4(8): 2801-2810. | 4 | HAN Jung Hee, HONG Sung Jin, Eun Yong LEE, et al. Conversion of epoxides into trans-diols or trans-diol mono-ethers by iron() porphyrin complex[J]. Bulletin of the Korean Chemical Society, 2005, 26(9): 1434-1436. | 5 | KAHANDAL S S, KALE S R, DISALE S T, et al. Sulphated yttria-zirconia as a regioselective catalyst system for the alcoholysis of epoxides[J]. Catalysis Science & Technology, 2012, 2(7): 1493-1499. | 6 | MARYAM M A, MAHDI A, MAHDIEH M T, et al. Graphite oxide: a simple and efficient solid acid catalyst for the ring-opening of epoxides by alcohols[J]. Tetrahedron Letters, 2014, 55(49): 6694-6697. | 7 | THORNBURG N E, LIU Yangyang, LI Peng, et al. MOFs and their grafted analogues: regioselective epoxide ring-opening with Zr6 nodes[J]. Catalysis Science & Technology, 2016, 6(17): 6480-6484. | 8 | WILLIAMS D B G, LAWTON M. Aluminium triflate: a remarkable Lewis acid catalyst for the ring opening of epoxides by alcohols[J]. Organic & Biomolecular Chemistry, 2005, 3(18): 3269-3272. | 9 | LIU Yangyang, KLET R C, HUPP J T, et al. Probing the correlations between the defects in metal-organic frameworks and their catalytic activity by an epoxide ring-opening reaction[J]. Chemical Communications, 2016, 52(50): 7806-7809. | 10 | FENG Yan, LYDON M E, JONES C W. Polymer resin supported cobalt-salen catalysts: role of Co() salen species in the regioselective ring opening of 1,2-epoxyhexane with methanol[J]. ChemCatChem, 2013, 5(12): 3636-3643. | 11 | TANG Bo, DAI Weili, SUN Xiaoming, et al. Mesoporous Zr-beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides[J]. Green Chemistry, 2015, 17(3): 1744-1755. | 12 | AZIZI N, SAIDI M R. Highly chemoselective addition of amines to epoxides in water[J]. Organic Letters, 2005, 7(17): 3649-3651. | 13 | YADAV G D, SURVE P S. Regioselective ring opening reaction of epichlorohydrin with acetic acid to 3-chloro-2-hydroxypropyl acetate over cesium modified heteropolyacid on clay support[J]. Applied Catalysis A: General, 2013, 468: 112-119. | 14 | NUGENT W A. Chiral Lewis acid catalysis. enantioselective addition of azide to meso epoxides[J]. Journal of the American Chemical Society, 1992, 114(7): 2768-2769. | 15 | TAKEUCHI H, KITAJIMA K, YAMAMOTO Y, et al. The use of proton-exchanged X-type zeolite in catalysing ring-opening reactions of 2-substituted epoxides with nucleophiles and its effect on regioselectivity[J]. Journal of the Chemical Society, Perkin Transactions2, 1993(2): 199-203. | 16 | LIANG Shuguang, ZHOU Yinxi, LIU Huizhen, et al. Synthesis of propylene glycol methyl ether catalyzed by MCM-41[J]. Synthetic Communications, 2011, 41(6): 891-897. | 17 | TIMOFEEVA M N, PANCHENKO V N, Jong Won JUN, et al. Effect of the acid-base properties of metal phosphate molecular sieves on the catalytic performances in synthesis of propylene glycol methyl ether from methanol and propylene oxide[J]. Microporous and Mesoporous Materials, 2013, 165: 84-91. | 18 | KORE R, SRIVASTAVA R, SATPATI B. Highly efficient nanocrystalline zirconosilicate catalysts for the aminolysis, alcoholysis, and hydroamination reactions[J]. ACS Catalysis, 2013, 3(12): 2891-2904. | 19 | TAYADE K N, WANG Lianyue, SHANG Sensen, et al. Zirconium triflate grafted on SBA-15 as a highly efficient solid acid catalyst for ring opening of epoxides by amines and alcohols[J]. Chinese Journal of Catalysis, 2017, 38(4): 758-766. | 20 | PARULKAR A, JOSHI R, DESHPANDE N, et al. Synthesis and catalytic testing of Lewis acidic nano-MFI zeolites for the epoxide ring opening reaction with alcohol[J]. Applied Catalysis A: General, 2018, 566: 25-32. | 21 | TIMOFEEVA M N, KURCHENKO J V, KALASHNIKOVA G O, et al. A layered titanosilicate AM-4 as a novel catalyst for the synthesis of 1-methoxy-2-propanole from propylene oxide and methanol[J]. Applied Catalysis A: General, 2019, 587: 117240. | 22 | DESHPANDE N, PARULKAR A, JOSHI R, et al. Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: Regioselectivity and mechanism[J]. Journal of Catalysis, 2019, 370: 46-54. | 23 | ZHANG Xuehong, ZHANG Wenyu, LI Junping, et al. Synthesis of propylene glycol methyl ether over amine modified porous silica by ultrasonic technique[J]. Catalysis Communications, 2007, 8(3): 437-441. | 24 | DAS S, ASEFA T. Epoxide ring-opening reactions with mesoporous silica-supported Fe(Ⅲ) catalysts[J]. ACS Catalysis, 2011, 1(5): 502-510. | 25 | NARDI M, DALPOZZO R, OLIVERIO M, et al. Erbium(Ⅲ) triflate is a highly efficient catalyst for the synthesis of β-alkoxy alcohols 1,2-diols and β-hydroxy sulfides by ring opening of epoxides[J]. Synthesis, 2009, 20: 3433-3438. | 26 | BRUNELLI N A, LONG W, VENKATASUBBAIAH K, et al. Catalytic regioselective epoxide ring opening with phenol using homogeneous and supported analogues of dimethylaminopyridine[J]. Topics in Catalysis, 2012, 55(7/10): 432-438. | 27 | TANEMURA K, SUZUKI T. Aniline-terephthalaldehyde resin p-toluenesulfonate (ATRT) as a highly efficient and reusable catalyst for alcoholysis, hydrolysis, and acetolysis of epoxides[J]. Synthetic Communications, 2016, 46(22): 1781-1789. | 28 | DHAKSHINAMOORTHY A, ALVARO M, GARCIA H. Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring opening of epoxides[J]. Chemistry: a European Journal, 2010, 16(28): 8530-8536. | 29 | ZHOU Yuxiao, CHEN Yuzhen, HU Yingli, et al. MIL-101-SO3H: a highly efficient Br?nsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions[J]. Chemistry, 2014, 20(46): 14976-80. | 30 | XUE Zhimin, JIANG Jingyun, MA Mingguo, et al. Gadolinium-based metal-organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2623-2631. | 31 | TIMOFEEVA M N, PANCHENKO V N, GIL A, et al. Synthesis of propylene glycol methyl ether from methanol and propylene oxide over alumina-pillared clays[J]. Applied Catalysis B: Environmental, 2011, 102(3/4): 433-440. | 32 | TIMOFEEVA M N, PANCHENKO V N, GIL A, et al. Effect of the acid-base properties of Zr,Al-pillared clays on the catalytic performances in the reaction of propylene oxide with methanol[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 54-63. | 33 | TIMOFEEVA M N, PANCHENKO V N, MATROSOVA M M, et al. Factors affecting the catalytic performance of Zr,Al-pillared clays in the synthesis of propylene glycol methyl ether[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13565-13574. | 34 | CHENG Wenping, WANG Wenjuan, ZHAO Yuechang, et al. Influence of acid-base properties of ZnMgAl-mixed oxides for the synthesis of 1-methoxy-2-propanol[J]. Applied Clay Science, 2008, 42(1/2): 111-115. | 35 | TIMOFEEVA M N, KAPUSTIN A E, PANCHENKO V N, et al. Synthetic and natural materials with the brucite-like layers as high active catalyst for synthesis of 1-methoxy-2-propanol from methanol and propylene oxide[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 22-30. | 36 | ZENG Hongyan, WANG Yaju, FENG Zhen, et al. Synthesis of propylene glycol monomethyl ether over Mg/Al hydrotalcite catalyst[J]. Catalysis Letters, 2010, 137(1/2): 94-103. | 37 | ZHANG Wenyu, WANG Hui, WEI Wei, et al. Solid base and their performance in synthesis of propylene glycol methyl ether[J]. Journal of Molecular Catalysis A: Chemical, 2005, 231(1/2): 83-88. | 38 | LIU Shuigang, ZHANG Xuelan, LI Junping, et al. Preparation and application of stabilized mesoporous MgO-ZrO2 solid base[J]. Catalysis Communications, 2008, 9(7): 1527-1532. | 39 | ZHANG Xiaochen, WANG Min, ZHANG Chaofeng, et al. Epoxide hydrolysis and alcoholysis reactions over crystalline Mo-V-O oxide[J]. RSC Advances, 2016, 6(75): 70842-70847. | 40 | ZHANG Jiawei, CAI Qinghai, ZHAO Jingxiang, et al. Nano metal oxides as efficient catalysts for selective synthesis of 1-methoxy-2-propanol from methanol and propylene oxide[J]. RSC Advances, 2018, 8(8): 4478-4482. | 41 | LIANG Shuguang, LIU Huizhen, ZHOU Yinxi, et al. The tetramethylguanidine-based ionic liquid-catalyzed synthesis of propylene glycol methyl ether[J]. New Journal of Chemistry, 2010, 34(11): 2534-2536 | 42 | LIANG Shuguang, ZHOU Yinxi, LIU Huizhen, et al. Immobilized 1,1,3,3-tetramethylguanidine ionic liquids as the catalyst for synthesizing propylene glycol methyl ether[J]. Catalysis Letters, 2010, 140(1/2): 49-54. | 43 | TAO Duanjian, OUYANG Fan, LI Zhangmin, et al. Synthesis of tetrabutylphosphonium carboxylate ionic liquids and its catalytic activities for the alcoholysis reaction of propylene oxide[J]. Industrial & Engineering Chemistry Research, 2013, 52(48): 17111-17116. | 44 | Minh Ngoc HAA, WHITING R, HAN Sheng, et al. Supported ionic liquids on solid materials as catalysts for the synthesis of propylene glycol methyl ether[J]. Asian Journal of Chemistry, 2013, 25(5): 2722-2728. | 45 | NAKHATE A V, YADAV G D. Graphene-oxide-supported SO3H-functionalized imidazolium-based ionic liquid: efficient and recyclable heterogeneous catalyst for alcoholysis and aminolysis reactions[J]. Chemistry Select, 2018, 3(16): 4547-4556. | 46 | ZHAO Cong, CHEN Shengxin, ZHANG Ruirui, et al. Synthesis of propylene glycol ethers from propylene oxide catalyzed by environmentally friendly ionic liquids[J]. Chinese Journal of Catalysis, 2017, 38(5): 879-888. | 47 | CHEN Shengxin, LIU Ruixia, LI Yajing, et al. Relationship of basicity and hydrogen bond properties of ionic liquids with its catalytic performance: application to synthesis of propylene glycol methyl ether[J]. Catalysis Communications, 2017, 96: 69-73. | 48 | CHEN Shengxin, ZENG Guixiang, LI Yingwei, et al. Epoxide ring-opening reaction promoted by ionic liquid reactivity: interplay of experimental and theoretical studies[J]. Catalysis Science & Technology, 2019, 9(20): 5567-5571. | 49 | PASTORE H O, COLUCCIA S, MARCHESE L. Porous aluminophosphates: from molecular sieves to designed acids catalysts[J]. Annual Review of Materials Research, 2005, 36: 351-395. | 50 | OGAWA H, MIYAMOTO Y, FUJIGAKI T, et al. Ring-opening of 1,2-epoxyalkane with alcohols over H-ZSM-5 in liquid phase[J]. Catalysis Letters, 1996, 40(3/4): 253-255. | 51 | MINTOVA S, GILSON J P, VALTCHEV V, et al. Advances in nanosized zeolites[J]. Nanoscale, 2013, 5(15): 6693-6703. | 52 | FURUKAWA H, CORDOVA K E, OKEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. | 53 | LONG J R, YAGHI O M. The pervasive chemistry of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1213-1214. | 54 | HE Yanping, TAN Yanxi, ZHANG Jian. Tuning a layer to a pillared-layer metal-organic framework for adsorption and separation of light hydrocarbons[J]. Chemical Communications, 2013, 49(96): 11323-11325. | 55 | Myunghyun Paik SUH, PARK Hye Jeong, PRASAD T K, et al. Hydrogen storage in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 782-835. | 56 | FARRUSSENG D, AGUADO S, PINEL C. Metal-organic frameworks: opportunities for catalysis[J]. Angewandte Chemie: International Edition, 2009, 48(41): 7502-7513. | 57 | Jung Soo SEO, WHANG Dongmok, Hyoyoung LEE, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404(6781): 982-986. | 58 | SINGH B, ROY S K, SHARMA K P, et al. Role of acidity of pillared inter-layered clay (PILC) for the synthesis of pyridine bases[J]. Environmental and Clean Technology, 1998, 71(3): 246-252. | 59 | PRESCOTT H, LI Zhijian, KEMNITZ E, et al. Application of calcined Mg-Al hydrotalcites for michael additions: an investigation of catalytic activity and acid-base properties[J]. Journal of Catalysis, 2005, 234(1): 119-130. | 60 | CARLINI C. Synthesis of isobutanol by the guerbet condensation of methanol with n-propanol in the presence of heterogeneous and homogeneous palladium-based catalytic systems[J]. Journal of Molecular Catalysis A: Chemical, 2003, 204/205: 721-728. | 61 | CARLINI C, DI GIROLAMO M, MACINAI A, et al. Selective synthesis of isobutanol by means of the Guerbet reaction[J]. Journal of Molecular Catalysis A: Chemical, 2003, 200(1/2): 137-146. | 62 | ZHANG Wenyu, WANG Hui, LI Qibiao, et al. The mechanism for the synthesis of 1-methoxy-2-propanol from methanol and propylene oxide over magnesium oxide[J]. Applied Catalysis A: General, 2005, 294(2): 188-196. | 63 | FOUAD N E, THOMASSON P, KN?ZINGER H. IR study of adsorption and reaction of methylbutynol on the surface of pure and modified MgO catalysts: probing the catalyst surface basicity[J]. Applied Catalysis A: General, 2000, 194: 213-225. | 64 | WANG Hui, MENG Xiangzhan, ZHAO Guoying, et al. Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production[J]. Green Chemistry, 2017, 19(6): 1462-1489. | 65 | LIU Yumei, TIAN Ziqi, QU Feng, et al. Tuning ion-pair interaction in cuprous-based protic ionic liquids for significantly improved CO capture[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11894-11900. | 66 | YADAV G D, SINGH S. Ring opening of epoxides with alcohols using Fe(Cp)2BF4 as catalyst[J]. Tetrahedron Letters, 2014, 55(29): 3979-3983. | 67 | NAKAMURA D, SASANO Y, IWABUCHI Y. Ln(OTf)3-catalysed highly regioselective alcoholysis of 2,3-epoxy alcohols[J]. Organic & Biomolecular Chemistry, 2019, 17(14): 3581-3589. | 68 | MOGHADAM M, MOHAMMADPOOR-BALTORK I, TANGESTANINEJAD S, et al. Zirconyl triflate,[ZrO(OTf)2], as a new and highly efficient catalyst for ring-opening of epoxides[J]. Journal of the Iranian Chemical Society, 2009, 6(4): 789-799. | 69 | GOGATE P R, Cavitational reactors for process intensification of chemical processing applications: a critical review[J]. Chemical Engineering Processing Process Intensification, 2008, 47(4): 515-527. | 70 | CRAVOTTO GCINTAS P. Power ultrasoud in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications[J]. Chemical Society Reviews, 2006, 35(2): 180-196. | 71 | Yehwon LEE, YU Jihye, PARK Kyujoon, et al. Superior effect of ultrasonic homogenization to mechanical agitation on accelerating reaction rates in asymmetric ring opening of epoxides[J]. Bulletin of the Korean Chemical Society, 2017, 38(7): 795-803. | 72 | NASEF M M, ZAKERI M, ASADI J, et al. Environmentally benign and highly regioselective ring opening of epoxides accelerated by ultrasound irradiation[J]. Green Chemistry Letters, 2016, 9(1): 76-84. | 73 | CRAVOTTO G, CINTAS P. The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis[J]. Chemistry: a European Journal, 2007, 13(7): 1902-1909. | 74 | DIOOS B, JACOBS P. Microwave-assisted Cr(salen)-catalysed asymmetric ring opening of epoxides[J]. Journal of Catalysis, 2005, 235(2): 428-430. | 75 | YANG Shyh-Ming, MURRAY W V. Microwave assisted ring-opening of epoxides with N-biaryl sulfonamides in the synthesis of matrix metalloproteinase-9 inhibitors[J]. Tetrahedron Letters, 2008, 49(5): 835-839. | 76 | GARCíA-VIDAL J A, DURáN-VALLE C J, FERRERA-ESCUDERO S. Green chemistry: efficient epoxides ring-opening with 1-butanol under microwave irradiation[J]. Applied Surface Science, 2006, 252(17): 6064-6066. | 77 | MOJTAHEDI M M. Microwave assisted ring opening of epoxides with thiols on montmorillonite K-10 solid support[J]. Arkivoc Archive for Organic Chemistry, 2005, 38(3): 68-73. | 78 | WANG Changlong, ASTRUC D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion[J]. Chemical Society Reviews, 2015, 45(50): 7188-7216. | 79 | DAI Yitao, TüYSüZ H. Lead-free Cs3Bi2Br9 perovskite as photocatalyst for ring-opening reactions of epoxides[J]. ChemSusChem, 2019, 12(12): 2587-2592. | 80 | TAYLOR R, KRISHNA R. Modelling reactive distillation[J]. Chemical Engineering Science, 2000, 55(22): 5183-5229. | 81 | CHUA W, RANGAIAH G, HIDAJAT. Design and optimization of isopropanol process based on two alternatives for reactive distillation[J]. Chemical Engineering Processing: Process Intensification, 2017, 118: 108-116. | 82 | 高鑫, 赵悦, 李洪, 等. 反应精馏过程耦合强化技术基础与应用研究述评[J]. 化工学报, 2018, 69(1): 218-238. | 82 | GAO Xin, ZHAO Yue, LI Hong, et al. Review of basic and application investigation of reactive distillation technology for process intensification[J]. CIESC Journal, 2018, 69(1): 218-238. | 83 | MALONE M F, DOHERTY M F. Reactive distillation[J]. Industrial Engineering Chemistry Research2000, 39(11): 3953-3957. | 84 | CIRIC A R, GU Deyao. Synthesis of nonequilibrium reactive distillation processes by MINLP optimization[J]. AIChE Journal, 1994, 40(9): 1479-1487. | 85 | 安维中, 姜集宝, 林子昕, 等. 管式反应器合成乙二醇单乙醚工艺的模拟研究[J]. 化学反应工程与工艺, 2016, 32(1): 8-14. | 85 | AN Weizhong, JIANG Jibao, LIN Zixin, et al. Simulation on process of the tubular reactor for the synthesis of ethylene glycol monoethyl ether[J]. Chemical Reaction Engineering and Technology, 2016, 32(1): 8-14. | 86 | 许锡恩, 张为民, 刘永才. 催化精馏合成乙二醇乙醚的研究[J]. 高校化学工程学报, 1990, 4(4): 374-380. | 86 | XU Xi’en, ZHANG Weimin, LIU Yongcai. Study on synthesis of 2-ethoxyethanol using catalytic distillation[J]. Journal of Chemical Engineering of Chinese Universitics, 1990, 4(4): 374-380. | 87 | HANS H, WERNER R. Production of ethanolamines: US5545757[P]. 1996-08-13 | 88 | 吴兆立, 谢荣锦. 乙醇胺生产的液液管式反应工艺: CN1023401C[P]. 1994-01-05. | 88 | WU Zhaoli, XIE Rongjin. Pocess for liquid-liquid tube reaction for production of ethanolamine: CN1023401C[P]. 1994-01-05. | 89 | 刘丹, 安然, 安维中, 考虑不同产品选择性目标的乙醇胺反应精馏塔模拟与优化[J]. 化工学报, 2020, 71(3): 1202-1209. | 89 | LIU Dan, AN Ran, AN Weizhong. Simulation and optimization of reactive distillation column for ethanolamine production considering different products selectivity[J]. CIESC Journal, 2020, 71(3): 1202-1209. | 90 | CHUANG K T, DIRK-FAITAKIS C. Process for producing propylene glycol methyl ether: US20150057468A1[P]. 2015-02-26. | 91 | ZHAO Yuchao, YAO Chaoqun, CHEN Guangwen, et al. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor[J]. Green Chemistry, 2013, 15(2): 446-452. | 92 | JENSEN K F. Flow chemistry—Microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. | 93 | DENG Jian, ZHANG Jisong, WANG Kai, et al. Microreaction technology for synthetic chemistry[J]. Chinese Journal of Chemistry, 2019, 37(2): 161-170. | 94 | 郭凯, 何伟, 方正, 等. 一种利用微反应装置制备环氧化合物开环产物的方法: CN106431850A[P]. 2017-02-22. | 94 | GUO Kai, HE Wei, FANG Zheng, et al. Method for preparing ring opening product of epoxide by adopting microreaction device: CN106431850A[P]. 2017-02-22. | 95 | YAO Chaoqun, ZHAO Yuchao, CHEN Guangwen. Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications[J]. Chemical Engineering Science, 2018, 189: 340-359. | 96 | LIU Yumei, ZHOU Yan, GONG Wenqiang, et al. Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor[J]. Green Energy & Environment, 2020, 5(2): 147-153. | 97 | CRAVOTTO G, BONRATH W, TAGLIAPIETRA S. Intensification of organic reactions with hybrid flow reactors[J]. Chemical Engineering Processing Process Intensification, 2010, 49(9): 930-935. | 98 | CARO J, NOACK M. Zeolite membranes—Recent developments and progress[J]. Microporous Mesoporous Materials, 2008, 115(3): 215-233. | 99 | KRIEG H M, BREYTENBACH J C, KEIZER K. Resolution of 1,2-epoxyoctane by enantioselective catalytic hydrolysis in a membrane bioreactor[J]. Journal of Membrane Science, 2000, 180(1): 69-80. | 100 | CHOI Sung-Dae, KIM Geon-Joong. Enantioselective hydrolytic kinetic resolution of epoxides catalyzed by chiral Co() salen complexes immobilized in the membrane reactor[J]. Catalysis Letters, 2004, 92(1): 35-40. |
|