化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1847-1859.DOI: 10.16085/j.issn.1000-6613.2022-1190
收稿日期:
2022-06-27
修回日期:
2022-10-21
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
何志勇
作者简介:
何志勇(1975—),男,博士,高级工程师,研究方向为高端精细化学品的研制和工艺开发。E-mail:zyh750810@163.com。
HE Zhiyong(), GUO Tianfo, WANG Jinli, LYU Feng
Received:
2022-06-27
Revised:
2022-10-21
Online:
2023-04-25
Published:
2023-05-08
Contact:
HE Zhiyong
摘要:
“双碳”背景下,利用CO2与环氧化合物为原料制备聚醚碳酸酯多元醇是CO2化工利用的有效途径。高效的催化剂能够促进CO2与环氧化物反应,制备更高性能的聚合物产品。本文详细介绍了近3年CO2与环氧化合物开环共聚催化剂研究的主要进展。文中从非均相催化剂和均相催化剂两个方面,分别对金属羧酸盐、双金属氰化物、金属Salen、金属卟啉以及新型有机催化剂进行归类和综述。低廉的非均相催化剂仍是工业化实验的首选,但如何通过催化剂制备工艺控制活性位点分布,从而控制聚合物产品质量,是未来需要研究的重点。金属Salen催化剂是目前最热门的研究方向,其有机配体结构的多样性赋予多种金属组合配位的可能,期待开发更高效低廉的催化剂。
中图分类号:
何志勇, 郭天佛, 王金利, 吕锋. 二氧化碳/环氧化合物开环共聚催化剂进展[J]. 化工进展, 2023, 42(4): 1847-1859.
HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859.
序号 | 催化剂 | 温度/℃ | 时间/h | 压力/MPa | TON/g∙g-1 | FCO2/% | Mn浓度/kg∙mol-1 | PDI | 参考文献 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|
1 | ZnGA | 60 | 40 | 2 | 72.4 | 94.9 | 156.4 | 3.5 | [ | — |
2 | ZnGA酸蚀刻 | 60 | 40 | 2 | 98.2 | 93.0 | 135 | 2.1 | [ | — |
3 | ZnGA化学修饰 | 60 | 40 | 2 | 100.1 | 94.9 | 208 | 1.8 | [ | — |
4 | ZnGA+不同转移剂 | 60 | 4 | 3 | 385 | 91.5 | 36 | 3.6 | [ | CTA:乙二醇苯醚 |
5 | Co-Ni-DMC | 92 | 3 | 4.3 | 233 | 30 | 48.3 | 6.8 | [ | CTA:PPG-425 |
6 | DMC-ZnGA | 80 | 20 | 3 | 2543 | 40.5 | 2.27 | 1.21 | [ | CTA:PPG-400 |
7 | DMC-MAA配位 | 105 | 3 | 3 | — | 41.5 | 2.9 | 2.1 | [ | CTA:PPG |
8 | Co-Co-DMC多孔 | 90 | 24 | 2 | 181 | 20.0 | 68.6 | 4.1 | [ | — |
9 | Co-Fe-DMC多孔 | 90 | 24 | 2 | 111 | 33.5 | 50 | 5.9 | [ | — |
10 | Fe-Co-DMC多孔 | 90 | 24 | 2 | 142 | 16.3 | 85.4 | 6.3 | [ | — |
11 | DMC-RC-PBA | 100 | 24 | 5 | — | 74.1 | 4.788 | 2.74 | [ | 单体CHO |
表1 非均相催化剂催化CO2环氧的聚合效果
序号 | 催化剂 | 温度/℃ | 时间/h | 压力/MPa | TON/g∙g-1 | FCO2/% | Mn浓度/kg∙mol-1 | PDI | 参考文献 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|
1 | ZnGA | 60 | 40 | 2 | 72.4 | 94.9 | 156.4 | 3.5 | [ | — |
2 | ZnGA酸蚀刻 | 60 | 40 | 2 | 98.2 | 93.0 | 135 | 2.1 | [ | — |
3 | ZnGA化学修饰 | 60 | 40 | 2 | 100.1 | 94.9 | 208 | 1.8 | [ | — |
4 | ZnGA+不同转移剂 | 60 | 4 | 3 | 385 | 91.5 | 36 | 3.6 | [ | CTA:乙二醇苯醚 |
5 | Co-Ni-DMC | 92 | 3 | 4.3 | 233 | 30 | 48.3 | 6.8 | [ | CTA:PPG-425 |
6 | DMC-ZnGA | 80 | 20 | 3 | 2543 | 40.5 | 2.27 | 1.21 | [ | CTA:PPG-400 |
7 | DMC-MAA配位 | 105 | 3 | 3 | — | 41.5 | 2.9 | 2.1 | [ | CTA:PPG |
8 | Co-Co-DMC多孔 | 90 | 24 | 2 | 181 | 20.0 | 68.6 | 4.1 | [ | — |
9 | Co-Fe-DMC多孔 | 90 | 24 | 2 | 111 | 33.5 | 50 | 5.9 | [ | — |
10 | Fe-Co-DMC多孔 | 90 | 24 | 2 | 142 | 16.3 | 85.4 | 6.3 | [ | — |
11 | DMC-RC-PBA | 100 | 24 | 5 | — | 74.1 | 4.788 | 2.74 | [ | 单体CHO |
序号 | 催化剂 | 温度/℃ | 时间/h | 压力/MPa | TON/g∙g-1 | FCO2/% | Mn浓度/kg∙mol-1 | PDI | 参考文献 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|
1 | salen-Co(Ⅲ)-三核 | 60 | 4 | 3 | 305 | 98 | 24.7 | 1.1 | [ | — |
2 | [(babhq)CrN3(solv)] | 100 | 4 | 2.5 | 743 | — | 16.5 | 1.57 | [ | 单体CHO |
3 | Salen-Co(Ⅲ)-季铵盐 | 30 | 24 | 2 | 63.8 | 36.2 | 56.2 | 1.61 | [ | — |
4 | SalenCoCl/n-Bu4NBr | 50 | 6 | 3 | 11.3 | — | — | — | [ | — |
5 | 氨基双(酚盐)合铬(Ⅲ)配合物 | 60 | 24 | 4 | 450 | — | 11.5 | 1.31 | [ | 单体CHO |
6 | Salcy-CoCl配合物 | 40 | 6 | 3 | 31.3 | 96 | 12.7 | 1.27 | [ | — |
7 | Co3/Ln配合物催化剂 | 130 | 8 | 2 | 1050 | 99 | 66 | 1.04 | [ | 单体CHO |
8 | Co(Ⅲ)/M(Ⅰ)杂双核 | 50 | 5 | 2 | 96 | 99 | 2.3 | 1.08 | [ | — |
9 | Co(Ⅲ)/Na(Ⅰ)杂双核 | 100 | 8 | 0.1 | 54.5 | 96 | 2.5 | 1.16 | [ | 单体CHO |
10 | Al卟啉-不同取代基 | 70 | 3 | 3 | 102 | 99.9 | 45.8 | 1.19 | [ | — |
11 | Al卟啉-低聚物催化剂 | 100 | 1 | 4 | 78.3 | 62 | 42.6 | 1.3 | [ | — |
12 | Al卟啉-刷状低聚物催化剂 | 50 | 20 | — | 168 | 15.6 | 3.5 | 1.11 | [ | CO2含量4.05g |
13 | 有机催化-TEB+季铵盐 | 50 | — | 1 | 2.19 | — | 1.4 | 1.3 | [ | — |
14 | 有机催化-两性离子 | 60 | 4 | 2 | 31 | 93 | 14.6 | 1.13 | [ | — |
15 | 吡嗪胺配位催化剂 | 100 | 3 | 1.5 | 323.8 | — | — | — | [ | — |
16 | NHC配位铪催化剂 | 60 | 18 | 0.1 | 474 | 99 | 21 | 1.3 | [ | 单体CHO |
17 | 离子功能化金属配合物催化剂 | 80 | 12 | 1 | 21.7 | — | — | — | [ | — |
表2 均相催化剂催化CO2环氧的聚合效果
序号 | 催化剂 | 温度/℃ | 时间/h | 压力/MPa | TON/g∙g-1 | FCO2/% | Mn浓度/kg∙mol-1 | PDI | 参考文献 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|
1 | salen-Co(Ⅲ)-三核 | 60 | 4 | 3 | 305 | 98 | 24.7 | 1.1 | [ | — |
2 | [(babhq)CrN3(solv)] | 100 | 4 | 2.5 | 743 | — | 16.5 | 1.57 | [ | 单体CHO |
3 | Salen-Co(Ⅲ)-季铵盐 | 30 | 24 | 2 | 63.8 | 36.2 | 56.2 | 1.61 | [ | — |
4 | SalenCoCl/n-Bu4NBr | 50 | 6 | 3 | 11.3 | — | — | — | [ | — |
5 | 氨基双(酚盐)合铬(Ⅲ)配合物 | 60 | 24 | 4 | 450 | — | 11.5 | 1.31 | [ | 单体CHO |
6 | Salcy-CoCl配合物 | 40 | 6 | 3 | 31.3 | 96 | 12.7 | 1.27 | [ | — |
7 | Co3/Ln配合物催化剂 | 130 | 8 | 2 | 1050 | 99 | 66 | 1.04 | [ | 单体CHO |
8 | Co(Ⅲ)/M(Ⅰ)杂双核 | 50 | 5 | 2 | 96 | 99 | 2.3 | 1.08 | [ | — |
9 | Co(Ⅲ)/Na(Ⅰ)杂双核 | 100 | 8 | 0.1 | 54.5 | 96 | 2.5 | 1.16 | [ | 单体CHO |
10 | Al卟啉-不同取代基 | 70 | 3 | 3 | 102 | 99.9 | 45.8 | 1.19 | [ | — |
11 | Al卟啉-低聚物催化剂 | 100 | 1 | 4 | 78.3 | 62 | 42.6 | 1.3 | [ | — |
12 | Al卟啉-刷状低聚物催化剂 | 50 | 20 | — | 168 | 15.6 | 3.5 | 1.11 | [ | CO2含量4.05g |
13 | 有机催化-TEB+季铵盐 | 50 | — | 1 | 2.19 | — | 1.4 | 1.3 | [ | — |
14 | 有机催化-两性离子 | 60 | 4 | 2 | 31 | 93 | 14.6 | 1.13 | [ | — |
15 | 吡嗪胺配位催化剂 | 100 | 3 | 1.5 | 323.8 | — | — | — | [ | — |
16 | NHC配位铪催化剂 | 60 | 18 | 0.1 | 474 | 99 | 21 | 1.3 | [ | 单体CHO |
17 | 离子功能化金属配合物催化剂 | 80 | 12 | 1 | 21.7 | — | — | — | [ | — |
1 | WANG Y Y, DARENSBOURG D J. Carbon dioxide-based functional polycarbonates: metal catalyzed copolymerization of CO2 and epoxides[J]. Coordination Chemistry Reviews, 2018, 372: 85-100. |
2 | DARENSBOURG D J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2 [J]. Chemical Reviews, 2007, 107(6): 2388-2410. |
3 | 秦玉升. CO2/生物基环氧化合物共聚制备绿色聚碳酸酯材料[J]. 功能高分子学报, 2019, 32(5): 558-566. |
QIN Yusheng. Green polycarbonates prepared by CO2 and bio-based epoxides[J]. Journal of Functional Polymers, 2019, 32(5): 558-566. | |
4 | 韩微莉, 王文珍, 蔺伟. 二氧化碳与环氧化物共聚催化剂研究进展[J]. 分子催化, 2017, 31(6): 575-593. |
HAN Weili, WANG Wenzhen, LIN Wei. Research progress of catalysts for copolymerization of carbon dioxide and epoxides[J]. Journal of Molecular Catalysis (China), 2017, 31(6): 575-593. | |
5 | 胡交利, 高超, 米文涛, 等. 聚碳酸亚丙酯应用进展[J]. 塑料工业, 2021, 49(10): 1-4, 80. |
HU Jiaoli, GAO Chao, MI Wentao, et al. Application progress of polypropylene carbonate[J]. China Plastics Industry, 2021, 49(10): 1-4, 80. | |
6 | 李晓云, 李其峰, 赵雨花, 等. 二氧化碳在聚氨酯中的资源化应用[J]. 燃料化学学报, 2022, 50(2): 195-209. |
LI Xiaoyun, LI Qifeng, ZHAO Yuhua, et al. Utilization of carbon dioxide in polyurethane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 195-209. | |
7 | LIU Shunjie, WANG Xianhong. Polymers from carbon dioxide: polycarbonates, polyurethanes[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 61-66. |
8 | AIDA T, ISHIKAWA M, INOUE S. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight[J]. Macromolecules, 1986, 19(1): 8-13. |
9 | KLAUS S, LEHENMEIER M W, HERDTWECK E, et al. Mechanistic insights into heterogeneous zinc dicarboxylates and theoretical considerations for CO2-epoxide copolymerization[J]. Journal of the American Chemical Society, 2011, 133(33): 13151-13161. |
10 | VARGHESE J K, PARK D S, JEON J Y, et al. Double metal cyanide catalyst prepared using H3Co(CN)6 for high carbonate fraction and molecular weight control in carbon dioxide/propylene oxide copolymerization[J]. Journal of Polymer Science A: Polymer Chemistry, 2013, 51(22): 4811-4818. |
11 | DARENSBOURG D J, HOLTCAMP M W. Catalytic activity of zinc(Ⅱ) phenoxides which possess readily accessible coordination sites. copolymerization and terpolymerization of epoxides and carbon dioxide[J]. Macromolecules, 1995, 28(22): 7577-7579. |
12 | CHENG Ming, LOBKOVSKY E B, COATES G W. Catalytic reactions involving C1 feedstocks: new high-activity Zn(Ⅱ)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides[J]. Journal of the American Chemical Society, 1998, 120(42): 11018-11019. |
13 | CHATTERJEE C, CHISHOLM M H. The influence of the metal (Al, Cr, and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and carbon dioxide by porphyrin metal(Ⅲ) complexes. 1. Aluminum chemistry[J]. Inorganic Chemistry, 2011, 50(10): 4481-4492. |
14 | DARENSBOURG D J, YARBROUGH J C. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst[J]. Journal of the American Chemical Society, 2002, 124(22): 6335-6342. |
15 | KEMBER M R, KNIGHT P D, REUNG P T R, et al. Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure[J]. Angewandte Chemie International Edition, 2009, 48(5): 931-933. |
16 | DU Longchao, WANG Chengze, ZHU Weiju, et al. Copolymerization of carbon dioxide and propylene oxide catalyzed by two kinds of bifunctional salen-cobalt(Ⅲ) complexes bearing four quaternary ammonium salts[J]. Journal of the Chinese Chemical Society, 2020, 67(1): 72-79. |
17 | 张鹏, 刘定华. 双金属氰化络合催化剂催化环氧烷烃与二氧化碳共聚研究进展[J]. 化工进展, 2016, 35(7): 2081-2090. |
ZHANG Peng, LIU Dinghua. The progress of copolymerization of alkylene oxide with carbon dioxide catalyzed by double metal cyanide complex catalysts[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2081-2090. | |
18 | PADMANABAN S, KIM M, YOON S. Acid-mediated surface etching of a nano-sized metal-organic framework for improved reactivity in the fixation of CO2 into polymers[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 336-344. |
19 | PADMANABAN S, YOON S. Surface modification of a MOF-based catalyst with Lewis metal salts for improved catalytic activity in the fixation of CO2 into polymers[J]. Catalysts, 2019, 9(11): 892-903. |
20 | MARBACH J, HÖFER T, BORNHOLDT N, et al. Catalytic chain transfer copolymerization of propylene oxide and CO2 using zinc glutarate catalyst[J]. ChemistryOpen, 2019, 8(7): 828-839. |
21 | ALFEROV K, WANG Shuanjin, LI Tianhao, et al. Co-Ni cyanide Bi-metal catalysts: copolymerization of carbon dioxide with propylene oxide and chain transfer agents[J]. Catalysts, 2019, 9(8): 632-651. |
22 | AN N, LI Q, YIN N, et al. Facile preparation and synergy study of DMC/ZnGA composite catalyst for the synthesis of oligo (propylene-carbonate) diols[J]. Applied Organometallic Chemistry, 2019, 33(8): 4999-5009. |
23 | TRAN C H, KIM S A, MOON Y, et al. Effect of dicarbonyl complexing agents on double metal cyanide catalysts toward copolymerization of CO2 and propylene oxide[J]. Catalysis Today, 2021, 375: 335-342. |
24 | PENCHE G, GONZÁLEZ-VELASCO J R, GONZÁLEZ-MARCOS M P. Porous hexacyanometallate(Ⅲ) complexes as catalysts in the ring-opening copolymerization of CO2 and propylene oxide[J]. Catalysts, 2021, 11(12): 1450-1473. |
25 | ZHANG Weibin, FAN Touwen, YANG Zhen, et al. Crystal phase-driven copolymerization of CO2 and cyclohexene oxide in Prussian blue analogue nanosheets[J]. Applied Materials Today, 2022, 26: 101352-101361. |
26 | DARENSBOURG D J, WILSON S J. What’s new with CO2? Recent advances in its copolymerization with oxiranes[J]. Green Chemistry, 2012, 14(10): 2665-2671. |
27 | KOZAK C M, AMBROSE K, ANDERSON T S. Copolymerization of carbon dioxide and epoxides by metal coordination complexes[J]. Coordination Chemistry Reviews, 2018, 376: 565-587. |
28 | 夏力, 王文珍, 李磊磊, 等. 用于二氧化碳和环氧化物共聚的Salen型催化剂的研究进展[J]. 西安石油大学学报(自然科学版), 2019, 4(34): 109-118. |
XIA Li, WANG Wenzhen, LI Leilei, et al. Research progress in catalysts for copolymerization of carbon dioxide and epoxides[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(4): 109-118. | |
29 | DUAN Ranlong, HU Chenyang, SUN Zhiqiang, et al. Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO2: Cocatalyst-free catalysis[J]. Green Chemistry, 2019, 21(17): 4723-4731. |
30 | HARTWEG M, SUNDERMEYER J. Quinoline-8-olato-chromium catalysts with pseudohalogen effects for the CO2/cyclohexene epoxide copolymerization[J]. European Polymer Journal, 2019, 120: 109245-109249. |
39 | CAO Han, ZHANG Ruoyu, ZHOU Zhenzhen, et al. On-demand transformation of carbon dioxide into polymers enabled by a comb-shaped metallic oligomer catalyst[J]. ACS Catalysis, 2022, 12(1): 481-490. |
40 | PATIL N, BHOOPATHI S, CHIDARA V, et al. Recycling a borate complex for synthesis of polycarbonate polyols: towards an environmentally friendly and cost-effective process[J]. ChemSusChem, 2020, 13(18): 5080-5087. |
41 | WANG Ying, ZHANG Jianyu, YANG Jialiang, et al. Highly selective and productive synthesis of a carbon dioxide-based copolymer upon zwitterionic growth[J]. Macromolecules, 2021, 54(5): 2178-2186. |
42 | WANG Wenzhen, XU Yachao, WANG Li, et al. Transition metal complexes with pyrazine amine ligand: preparation, structure and carbon dioxide copolymerization behavior[J]. Journal of Molecular Structure, 2019, 1193: 280-285. |
43 | LALREMPUIA R, UNDERHAUG J, TÖRNROOS K W, et al. Anionic hafnium species: an active catalytic intermediate for the coupling of epoxides with CO2?[J]. Chemical Communications, 2019, 55(50): 7227-7230. |
44 | TUMELI T R, VAN WYK J L. Synthesis and characterization of ionic functionalized cobalt and chromium complexes derived from salicylaldimine ligands: application as catalysts in the coupling of carbon dioxide with propylene oxide[J]. Inorganica Chimica Acta, 2021, 527: 120563-120568. |
31 | YU Jinfa, MAO Minjie, LI Huiping, et al. Synthesis, characterization and catalytic activity of salen Co(Ⅲ)Cl in alternating copolymerization of CO2 and propylene oxide[J]. Chinese Journal of Structural Chemistry, 2020, 39(1): 86-95. |
32 | AMBROSE K, MURPHY J N, KOZAK C M. Chromium diamino-bis(phenolate) complexes as catalysts for the ring-opening copolymerization of cyclohexene oxide and carbon dioxide[J]. Inorganic Chemistry, 2020, 59(20): 15375-15383. |
33 | HUANG Jie, XU Yunpeng, WANG Meige, et al. Copolymerization of propylene oxide and CO2 catalyzed by dinuclear salcy-CoCl complex[J]. Journal of Macromolecular Science A, 2020, 57(2): 131-138. |
34 | ASABA H, IWASAKI T, HATAZAWA M, et al. Alternating copolymerization of CO2 and cyclohexene oxide catalyzed by cobalt-lanthanide mixed multinuclear complexes[J]. Inorganic Chemistry, 2020, 59(12): 7928-7933. |
35 | DEACY A C, MOREBY E, PHANOPOULOS A, et al. Co(Ⅲ)/alkali-metal(Ⅰ) heterodinuclear catalysts for the ring-opening copolymerization of CO2 and propylene oxide[J]. Journal of the American Chemical Society, 2020, 142(45): 19150-19160. |
36 | LINDEBOOM W, FRASER D A X, DURR C B, et al. Heterodinuclear Zn(Ⅱ), Mg(Ⅱ) or Co(Ⅲ) with Na(Ⅰ) catalysts for carbon dioxide and cyclohexene oxide ring opening copolymerizations [J]. Chemistry: a European Journal, 2021, 27(47): 12224-12231. |
37 | 郭洪辰, 秦玉升, 王献红, 等. 铝卟啉配合物催化二氧化碳与环氧丙烷共聚反应[J]. 应用化学, 2019, 36(10): 1118-1127. |
GUO Hongchen, QIN Yusheng, WANG Xianhong, et al. Copolymerization of carbon dioxide and propylene oxide under aluminum porphyrin catalyst[J]. Chinese Journal of Applied Chemistry, 2019, 36(10): 1118-1127. | |
38 | CAO Han, QIN Yusheng, ZHUO Chunwei, et al. Homogeneous metallic oligomer catalyst with multisite intramolecular cooperativity for the synthesis of CO2-based polymers[J]. ACS Catalysis, 2019, 9(9): 8669-8676. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[10] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[11] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |