1 | TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS catalysis, 2013, 3(9): 2130-2149. | 2 | BRIDIER B, PEREZ-RAMIREZ J. Cooperative effects in ternary Cu-Ni-Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation[J]. Journal of the American Chemical Society, 2010, 132(12): 4321-4327. | 3 | MCCUE A J, ANDERSON J A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Frontiers of Chemical Science and Engineering, 2015, 9(2): 142-153. | 4 | 尚国隆.电石法乙炔气清净工艺研究[D]. 青岛: 青岛科技大学, 2018. | 4 | SHANG G L. Study on the purification process of acetylene by calcium carbide[D]. Qingdao: Qingdao University of Science and Technology, 2018. | 5 | 赵令玉.乙炔选择加氢制乙烯催化剂及反应工艺的研究[D]. 石河子: 石河子大学,2010. | 5 | ZHAO L Y. Catalysts to synthesis ethylene of selective hydrogenation of acetylene and its reaction technology[D]. Shihezi: Shihezi University, 2010. | 6 | BENAVIDEZ A D, BURTON P D, NOGALES J L, et al. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene[J]. Applied Catalysis A: General, 2014, 482: 108-115. | 7 | CAO Y Q, FU W Z, SUI Z J, et al. Kinetics insights and active sites discrimination of Pd-Catalyzed selective hydrogenation of acetylene[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1888-1895. | 8 | RUTA M, SEMAGINA N, KIWI-MINSKER L. Monodispersed Pd nanoparticles for acetylene selective hydrogenation: particle size and support effects[J]. The Journal of Physical Chemistry C, 2008, 112(35): 13635-13641. | 9 | SHI X X, LIN Y, HUANG L, et al. Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles[J]. ACS Catalysis, 2020, 10(5): 3495-3504. | 10 | KUO C T, LU Y, KOVARIK L, et al. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters[J]. ACS Catalysis, 2019, 9(12): 11030-11041. | 11 | CRESPO-QUESADA M, YARULIN A, JIN M, et al. Structure sensitivity of alkynol hydrogenation on shape-and size-controlled palladium nanocrystals: which sites are most active and selective?[J]. Journal of the American Chemical Society, 2011, 133(32): 12787-12794. | 12 | á MOLNáR, SáRKáNY A, VARGA M. Hydrogenation of carbon-carbon multiple bonds: chemo-, regio-and stereo-selectivity[J]. Journal of Molecular Catalysis A: Chemical, 2001, 173(1/2): 185-221. | 13 | KIM S K, KIM C, LEE J H, et al. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2013, 306: 146-154. | 14 | YARULIN A E, CRESPO-QUESADA R M, EGOROVA E V, et al. Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape-controlled palladium nanoparticles[J]. Kinetics and Catalysis, 2012, 53(2): 253-261. | 15 | YANG B, BURCH R, HARDACRE C, et al. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study[J]. Journal of Catalysis, 2013, 305: 264-276. | 16 | NIU Y, ZHANG B, LUO J, et al. Correlation between microstructure evolution of a well-defined cubic palladium catalyst and selectivity during acetylene hydrogenation[J]. ChemCatChem, 2017, 9(18): 3435-3439. | 17 | TESCHNER D, BORSODI J, WOOTSCH A, et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation[J]. Science, 2008, 320(5872): 86-89. | 18 | CRESPO-QUESADA M, YOON S, JIN M, et al. Shape-dependence of Pd nanocrystal carburization during acetylene hydrogenation[J]. The Journal of Physical Chemistry C, 2015, 119(2): 1101-1107. | 19 | WANG Y, YANG J, GU R, et al. Crystal-facet effect of γ-Al2O3 on supporting CrOx for catalytic semihydrogenation of acetylene[J]. ACS Catalysis, 2018, 8(7): 6419-6425. | 20 | HE Y, FAN J, FENG J, et al. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: effect of support acidic and basic properties[J]. Journal of Catalysis, 2015, 331: 118-127. | 21 | CAO Y Q, FU W Z, REN Z, et al. Tailoring electronic properties and kinetics behaviors of Pd/N-CNTs catalysts for selective hydrogenation of acetylene[J]. AIChE Journal, 2020, 66(4): e16857. | 22 | VILé G, ALBANI D, ALMORA-BARRIOS N, et al. Advances in the design of nanostructured catalysts for selective hydrogenation[J]. ChemCatChem, 2016, 8(1): 21-33. | 23 | NIKOLAEV S A, ZANAVESKIN L N, SMIRNOV V V, et al. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects[J]. Russian Chemical Reviews, 2009, 78(3): 231. | 24 | CAO Y Q, SUI Z J, ZHU Y A, et al. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: promotional effect of indium and composition-dependent performance[J]. ACS Catalysis, 2017, 7(11): 7835-7846. | 25 | MARKOV P V, BUKHTIYAROV A V, MASHKOVSKY I S, et al. PdIn/Al2O3 intermetallic catalyst: structure and catalytic characteristics in selective hydrogenation of acetylene[J]. Kinetics and Catalysis, 2019, 60(6): 842-850. | 26 | FENG Q C, ZHAO S, WANG Y, et al. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes[J]. Journal of the American Chemical Society, 2017, 139(21): 7294-7301. | 27 | ZHOU H R, YANG X F, LI L, et al. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene[J]. ACS Catalysis, 2016, 6(2): 1054-1061. | 28 | SHAO L D, ZHANG W, ARMBRüSTER M, et al. Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts[J]. Angewandte Chemie: International Edition, 2011, 50(43): 10231-10235. | 29 | GLYZDOVA D V, VEDYAGIN A A, TSAPINA A M, et al. A study on structural features of bimetallic Pd-M/C (M: Zn, Ga, Ag) catalysts for liquid-phase selective hydrogenation of acetylene[J]. Applied Catalysis A: General, 2018, 563: 18-27. | 30 | RIYAPAN S, ZHANG Y, WONGKAEW A, et al. Preparation of improved Ag-Pd/TiO2 catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene[J]. Catalysis Science & Technology, 2016, 6(14): 5608-5617. | 31 | ZHANG R, ZHANG J, ZHAO B, et al. Insight into the effects of Cu component and the promoter on the selectivity and activity for efficient removal of acetylene from ethylene on Cu-based catalyst[J]. The Journal of Physical Chemistry C, 2017, 121(50): 27936-27949. | 32 | YANG B, BURCH R, HARDACRE C, et al. Origin of the increase of activity and selectivity of nickel doped by Au, Ag, and Cu for acetylene hydrogenation[J]. ACS Catalysis, 2012, 2(6): 1027-1032. | 33 | STUDT F, ABILD-PEDERSEN F, BLIGAARD T, et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene[J]. Science, 2008, 320(5881): 1320-1322. | 34 | SPANJERS C S, HELD J T, JONES M J, et al. Zinc inclusion to heterogeneous nickel catalysts reduces oligomerization during the semi-hydrogenation of acetylene[J]. Journal of Catalysis, 2014, 316: 164-173. | 35 | CAO Y Q, ZHANG H, JI S F, et al. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation[J]. Angewandte Chemie, 2020, 132(28):11744-11749. | 36 | LIU Y, LIU X, FENG Q, et al. Intermetallic NixMy (M= Ga and Sn) nanocrystals: a non-precious metal catalyst for semi-hydrogenation of alkynes[J]. Advanced Materials, 2016, 28(23): 4747-4754. | 37 | LI Q, WANG Y, SKOPTSOV G, et al. Selective hydrogenation of acetylene to ethylene over bimetallic catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20620-20629. | 38 | LIN J, WANG A Q, QIAO B T, et al. Remarkable performance of Ir1/FeOxsingle-atom catalyst in water gas shift reaction[J]. Journal of the American Chemical Society, 2013, 135(41): 15314-15317. | 39 | CAO L, LIU W, LUO Q Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2[J]. Nature, 2019, 565(7741): 631-635. | 40 | THOMAS J M, RAJA R, LEWIS D W. Single-site heterogeneous catalysts[J]. Angewandte Chemie: International Edition, 2005, 44(40): 6456-6482. | 41 | DAI X Y, CHEN Z, YAO T, et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene[J]. Chemical Communications, 2017, 53(84): 11568-11571. | 42 | KYRIAKOU G, BOUCHER M B, JEWELL A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212. | 43 | ZHAO Y, ZHU M Y, KANG L H. The DFT study of single-atom Pd1/gC3N4 catalyst for selective acetylene hydrogenation reaction[J]. Catalysis Letters, 2018, 148(10): 2992-3002. | 44 | HUANG F, DENG Y C, CHEN Y L, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene[J]. Journal of the American Chemical Society, 2018, 140(41): 13142-13146. | 45 | HUANG F, DENG Y C, CHEN Y L, et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene[J]. Nature Communications, 2019, 10(1): 1-7. | 46 | HUANG X H, XIA Y J, CAO Y J, et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation[J]. Nano Research, 2017, 10(4): 1302-1312. | 47 | ZHOU S Q, SHANG L, ZHAO Y X, et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene[J]. Advanced Materials, 2019, 31(18): 1900509. | 48 | ZHUO H Y, YU X, YU Q, et al. Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts[J]. Science China Materials, 2020, 63(9): 1741-1749. | 49 | PEI G X, LIU X Y, WANG A, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6): 3717-3725. | 50 | PEI G X, LIU X Y, WANG A, et al. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene[J]. New Journal of Chemistry, 2014, 38(5): 2043-2051. | 51 | PEI G X, LIU X Y, YANG X, et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions[J]. ACS Catalysis, 2017, 7(2): 1491-1500. | 52 | LIU D. DFT study of selective hydrogenation of acetylene to ethylene on Pd doping Ag nanoclusters[J]. Applied Surface Science, 2016, 386: 125-137. | 53 | CAO X, MIRJALILI A, WHEELER J, et al. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 442-449. | 54 | BATISTA J, PINTAR A, GOMIL?EK J P, et al. On the structural characteristics of γ-alumina-supported Pd-Cu bimetallic catalysts[J]. Applied Catalysis A: General, 2001, 217(1/2): 55-68. | 55 | J?RGENSEN M, GRO?NBECK H. Selective acetylene hydrogenation over single-atom alloy nanoparticles by kinetic Monte Carlo[J]. Journal of the American Chemical Society, 2019, 141(21): 8541-8549. | 56 | RILEY C, ZHOU S, KUNWAR D, et al. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor[J]. Journal of the American Chemical Society, 2018, 140(40): 12964-12973. |
|