1 |
LIANG C, WANG Z. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties[J]. Chemical Engineering Journal, 2019, 373: 598-605.
|
2 |
王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448.
|
|
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448.
|
3 |
FU G, LI Q, YE J, et al. Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(9): 7707-7717.
|
4 |
韩尊强, 邢健雄, 余晓娟, 等. 竹炭及其复合材料在超级电容器中的应用研究进展[J]. 林产化学与工业, 2020, 40(1): 8-16.
|
|
HAN Zunqiang, XING Jianxiong, YU Xiaojuan, et al. Research progress on bamboo-based supercapacitor electrode material[J]. Chemistry and Industry of Forest Products, 2020, 40(1): 8-16.
|
5 |
WANG J, ZHANG P, LIU L, et al. Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor[J]. Chemical Engineering Journal, 2018, 348: 57-66.
|
6 |
GUO D, XIN R, WANG Y, et al. N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors[J]. Microporous and Mesoporous Materials, 2019, 279: 323-333.
|
7 |
YAGLIKCI S, GOKCE Y, YAGMUR E, et al. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environmental Technology, 2020, 41(1): 36-48.
|
8 |
李诗杰, 郭常敏, 陈学聪, 等. 基于“蛋盒”结构高电化学性能活性炭的制备[J]. 化工进展, 2020, 39(7): 2698-2705.
|
|
LI Shijie, GUO Changmin, CHEN Xuecong, et al. Preparation of high performance activated carbon based on “egg-box” structure[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2698-2705.
|
9 |
ZHAO C, HUANG Y, ZHAO C, et al. Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors[J]. Electrochimica Acta, 2018, 291: 287-296.
|
10 |
WANG Y, YANG B, ZHANG D, et al. Strong polar nonaqueous solvent-assisted microwave fabrication of N and P co-doped microporous carbon for high-performance supercapacitor[J]. Applied Surface Science, 2020, 512: 145711-145720.
|
11 |
LOU Z, SUN Y, BIAN S, et al. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar[J]. Chemosphere, 2017, 169: 23-31.
|
12 |
张海波, 闫洋洋, 程红艳, 等. 平菇菌糠生物炭对水体中Pb2+的吸附特性与机制[J]. 环境工程学报, 2020, 14(11): 3170-3181.
|
|
ZHANG Haibo, YAN Yangyang, CHENG Hongyan, et al. Adsorption characteristics and mechanisms of Pb2+ in water on biochar derived from spent Pleurotus ostreatus substrate[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3170-3181.
|
13 |
WAN L, WEI W, XIE M, et al. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode[J]. Electrochimica Acta, 2019, 311: 72-82.
|
14 |
LU C, CHEN X. Porous g-C3N4 covered MOF-derived nanocarbon materials for high-performance supercapacitors[J]. RSC Advances, 2019, 9(67): 39076-39081.
|
15 |
GUO D, DING B, HU X, et al. Synthesis of boron and nitrogen codoped porous carbon foam for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 11441-11449.
|
16 |
SONG M, ZHOU Y, REN X, et al. Biowaste-based porous carbon for supercapacitor: the influence of preparation processes on structure and performance[J]. Journal of Colloid and Interface Science, 2019, 535: 276-286.
|
17 |
WANG Y, LIU R, TIAN Y, et al. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors[J]. Chemical Engineering Journal, 2020, 384: 123263-123272.
|
18 |
ZHANG W, CHEN Z, GUO X, et al. N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor[J]. Electrochimica Acta, 2018, 278: 51-60.
|
19 |
曲可琪, 尤月, 程扬, 等. 香菇碳量子点的制备及其对Fe3+的响应[J]. 功能材料, 2019, 50(9): 9215-9220.
|
|
QU Keqi, YOU Yue, CHENG Yang, et al. Preparation of carbon quantum dots derived from mushroom and their response to Fe3+[J]. Journal of Functional Materials, 2019, 50(9): 9215-9220.
|
20 |
CHI V, LEE S, CHUNG Y, et al. Synergistic effect of metal-organic framework-derived boron and nitrogen heteroatom-doped three-dimensional porous carbons for precious-metal-free catalytic reduction of nitroarenes[J]. Applied Catalysis B: Environmental, 2019, 257: 117888-117897.
|
21 |
HUANG W, ZHANG A, LIANG H, et al. Novel fabrication of hollow and spinous NiCo2S4 nanotubes templated by natural silk for all-solid-state asymmetric supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 549: 140-149.
|
22 |
SHI C, QI H, MA R, et al. N, S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells[J]. Materials Science & Engineering C, 2019, 105: 110132-110139.
|
23 |
WANG M, YANG Z, LI W, et al. Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network[J]. Small, 2016, 12(19): 2559-2566.
|
24 |
XIA Q, YANG H, WANG M, et al. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode[J]. Advanced Energy Materials, 2017, 7(22): 1701336-1701344.
|
25 |
MAO N, WANG H, SUI Y, et al. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading[J]. Nano Research, 2017, 10(5): 1767-1783.
|
26 |
FAN B, YAN J, HU A, et al. High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, sulfur co-doped carbon[J]. Carbon, 2020, 164: 1-11.
|
27 |
CHEN H, XIONG Y, YU T, et al. Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior[J]. Carbon, 2017, 113: 266-273.
|
28 |
LIN Z, XIANG X, PENG S, et al. Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance[J]. Journal of Electroanalytical Chemistry, 2018, 823: 563-572.
|
29 |
TANG D, LUO Y, LEI W, et al. Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications[J]. Applied Surface Science, 2018, 462: 862-871.
|
30 |
MOHAMED S, HUSSAIN I, SHIM J. One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes[J]. Nanoscale, 2018, 10: 6620-6628.
|
31 |
LIU Y, LI Z, YAO L, et al. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 366: 550-559.
|
32 |
LI B, CHENG Y, DONG L, et al. Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors[J]. Carbon, 2017, 122: 592-603.
|
33 |
QU S, CHEN Z, ZHUO H, et al. Using FeCl3 as a solvent, template, and activator to prepare B, N co-doping porous carbon with excellent supercapacitance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15983-15994.
|
34 |
LIN G, MA R, ZHOU Y, et al. Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors[J]. Journal of Colloid and Interface Science, 2018, 527: 230-240.
|
35 |
史长亮, 邢宝林, 曾会会, 等. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324, 3331.
|
|
SHI Changliang, XING Baolin, ZENG Huihui, et al. Preparation of hierarchical pore biomass activated carbons and their capacitance characteristics[J]. Materials Review, 2018, 32(19): 3318-3324, 3331.
|
36 |
YANG L, QIU J, WANG Y, et al. Molten salt synthesis of hierarchical porous carbon from wood sawdust for supercapacitors[J]. Journal of Electroanalytical Chemistry, 2020, 856: 113673-113679.
|
37 |
WANG Z, YUN S, WANG X, et al. Aloe peel-derived honeycomb-like bio-based carbon with controllable morphology and its superior electrochemical properties for new energy devices[J]. Ceramics International, 2019, 45(4): 4208-4218.
|
38 |
许伟佳, 邱大平, 刘诗强, 等. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632.
|
|
XU Weijia, QIU Daping, LIU Shiqiang, et al. Preparation of cork-derived porous activated carbon for high performance supercapacitors[J]. Journal of Inorganic Materials, 2019, 34(6): 625-632.
|
39 |
李志敏, 王倩, 王成娟, 等. 百合生物质碳材料的制备及其电化学性能研究[J]. 西北师范大学学报(自然科学版), 2018, 54(6): 52-57, 63.
|
|
LI Zhimin, WANG Qian, WANG Chengjuan, et al. Preparation and electrochemical performance of lily bulbs-based porous carbon[J]. Journal of Northwest Normal University (Natural Science), 2018, 54(6): 52-57, 63.
|
40 |
BOUJIBAR O, GHOSH A, ACHAK O, et al. A high energy storage supercapacitor based on nanoporous activated carbon electrode made from argan shells with excellent ion transport in aqueous and non-aqueous electrolytes[J]. Journal of Energy Storage, 2019, 26: 100958-100965.
|
41 |
ZOU X, WU D, MU Y, et al. Boron and nitrogen co-doped holey graphene aerogels with rich B—N motifs for flexible supercapacitors[J]. Carbon, 2020, 159: 94-101.
|