1 | XU S M, DAS S, ARCHER L. The Li-CO2 battery: a novel method for CO2 capture and utilization[J]. RSC Advances, 2013, 3(18): 6656-6660. | 2 | LIU Y L, WANG R, LYU Y C, et al. Rechargeable Li/CO2-O2 (2∶1) battery and Li/CO2 battery[J]. Energy & Environmental Science, 2014, 7(2): 677-681. | 3 | ZHANG Z, ZHANG Q, CHEN Y N, et al. The first introduction of graphene to rechargeable Li-CO2 batteries[J]. Angewandte Chemie: International Edition, 2015, 54(22): 6550-6553. | 4 | ZHANG X, ZHANG Q, ZHANG Z, et al. Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes[J]. Chemical Communications, 2015, 51(78): 14636-14639. | 5 | LEI D L, MA S Y, LU Y C, et al. High-performance Li-CO2 batteries with -MnO2/CNT cathodes[J]. Journal of Electronic Materials, 2019, 48(7): 4653-4659. | 6 | LI X L, ZHOU J W, ZHANG J X, et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries[J]. Advanced Materials, 2019, 31(39): 1903852. | 7 | AHMADIPARIDARI A, WARBURTON R, MAJIDI L, et al. A long-cycle-life lithium-CO2 battery with carbon neutrality[J]. Advanced Materials, 2019, 31(40): 1902518. | 8 | GE B C, SUN Y, GUO J X, et al. A Co-doped MnO2 catalyst for Li-CO2 batteries with low overpotential and ultrahigh cyclability[J]. Small, 2019, 15(34): 1902220. | 9 | LI J L, ZHAO H M, QI H C, et al. Drawing a pencil-trace cathode for a high-performance polymer-based Li-CO2 battery with redox mediator[J]. Advanced Functional Materials, 2019, 29(11): 1806863. | 10 | HU X F, LI Z F, CHEN J. Flexible Li-CO2 batteries with liquid-free electrolyte[J]. Angewandte Chemie: International Edition, 2017, 56(21): 5785-5789. | 11 | LI C, GUO Z Y, YANG B C, et al. A rechargeable Li-CO2 battery with a gel polymer electrolyte[J]. Angewandte Chemie: International Edition, 2017, 56(31): 9126-9130. | 12 | LIU Z X, ZHANG Y T, JIA C K, et al. Decomposing lithium carbonate with a mobile catalyst[J]. Nano Energy, 2017, 36: 390-397. | 13 | MUSHTAQ M, GUO X W, BI J P, et al. Polymer electrolyte with composite cathode for solid-state Li-CO2 battery[J]. Rare Metals, 2018, 37(6): 520-526. | 14 | YIN W, GRIMAUD A, AZCARATE I, et al. Electrochemical reduction of CO2 mediated by quinone derivatives: implication for Li-CO2 battery[J]. Journal of Physical Chemistry C, 2018, 122(12): 6546-6554. | 15 | LIU B, SUN Y L, LIU L Y, et al. Recent advances in understanding Li-CO2 electrochemistry[J]. Energy & Environmental Science, 2019, 12(3): 887-922. | 16 | LI X, YANG S X, FENG N N, et al. Progress in research on Li-CO2 batteries: mechanism, catalyst and performance[J]. Chinese Journal of Catalysis, 2016, 37(7): 1016-1024. | 17 | YANG S X, HE P, ZHOU H S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen[J]. Energy & Environmental Science, 2016, 9(5): 1650-1654. | 18 | JIN Y C, HU C G, DAI Q B, et al. High-performance Li-CO2 batteries based on metal-free carbon quantum dot/holey graphene composite catalysts[J]. Advanced Functional Materials, 2018, 28(47): 1804630. | 19 | XING W, LI S, DU D F, et al. Revealing the impacting factors of cathodic carbon catalysts for Li-CO2 batteries in the pore-structure point of view[J]. Electrochimica Acta, 2019, 311: 41-49. | 20 | YANG S X, QIAO Y, HE P, et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst[J]. Energy & Environmental Science, 2017, 10(4): 972-978. | 21 | QIAO Y, XU S M, LIU Y, et al. Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Li-CO2 battery[J]. Energy & Environmental Science, 2019, 12(3): 1100-1107. | 22 | ZHAO H M, LI D D, LI H D, et al. Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li-CO2 batteries[J]. Electrochimica Acta, 2019, 299: 592-599. | 23 | GUO Z Y, LI J L, QI H C, et al. A highly reversible long-life Li-CO2 battery with a RuP2-based catalytic cathode[J]. Small, 2019, 15(29): 1803246. | 24 | ZHANG Z, YANG C, WU S S, et al. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries[J]. Advanced Energy Materials, 2019, 9(8): 1802805. | 25 | XING Y, YANG Y, LI D H, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for ong-life rechargeable lithium-CO2 batteries[J]. Advanced Materials, 2018, 30(51): 1803124. | 26 | ZHANG Z, ZHANG Z W, LIU P F, et al. Identification of cathode stability in Li-CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene[J]. Journal of Materials Chemistry A, 2018, 6(7): 3218-3223. | 27 | ZHANG Z, WANG X G, ZHANG X, et al. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene[J]. Advanced Science, 2018, 5(2): 1700567. | 28 | ZHANG X, WANG C Y, LI H H, et al. High performance Li-CO2 batteries with NiO-CNT cathodes[J].Journal of Materials Chemistry A, 2018, 6(6): 2792-2796. | 29 | QIAO Y, LIU Y, CHEN C J, et al. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries[J]. Advanced Functional Materials, 2018, 28(51): 1805899. | 30 | XIE J F, LIU Q, HUANG Y Y, et al. A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO[J].Journal of Materials Chemistry A, 2018, 6(28): 13952-13958. | 31 | LI S W, LIU Y, ZHOU J W, et al. Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries[J]. Energy & Environmental Science, 2019, 12(3): 1046-1054. | 32 | PIPES R, BHARGAV A, MANTHIRAM A. Nanostructured anatase titania as a cathode catalyst for Li-CO2 batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37119-37124. | 33 | MA W Q, LU S S, LEI X F, et al. Porous Mn2O3 cathode for highly durable Li-CO2 batteries[J]. Journal of Materials Chemistry A, 2018, 6(42): 20829-20835. | 34 | HOU Y Y, WANG J Z, LIU L L, et al. Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries[J]. Advanced Functional Materials, 2017, 27(27): 1700564. | 35 | HOU Y Y, LIU Y Q, ZHOU Z, et al. Metal-oxygen bonds: stabilizing the intermediate species towards practical Li-air batteries[J].Electrochimica Acta, 2018, 259: 313-320. | 36 | ZHOU J W, LI X L, YANG C, et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency[J]. Advanced Materials, 2019, 31(3): 1804439. | 37 | LIANG H G, ZHANG Y L, CHEN F, et al. A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO2 batteries[J]. Applied Catalysis B: Environmental, 2019, 244:559-567. | 38 | AHMAD M Z, PETERS T, KONNERTZ N, et al. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes[J]. Separation and Purification Technology, 2020, 230: 115858. | 39 | LI S W, DONG Y, ZHOU J W, et al. Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries[J]. Energy & Environmental Science, 2018, 11(5): 1318-1325. | 40 | WANG X G, WANG C Y, XIE Z J, et al. Improving electrochemical performances of rechargeable Li-CO2 batteries with an electrolyte redox mediator[J]. ChemElectroChem, 2017, 4(9): 2145-2149. | 41 | GOODARZI M, NAZARI F, ILLAS F. Assessing the performance of cobalt phthalocyanine nanoflakes as molecular catalysts for Li-promoted oxalate formation in Li-CO2-oxalate batteries[J]. Journal of Physical Chemistry C, 2018, 122(45): 25776-25784. | 42 | CHEN U M, ZOU K Y, DING P, et al. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li-CO2 batteries[J]. Advanced Materials, 2019, 31(2): 1805484. |
|