1 | KOBAYASHI K. Forecasting supply and demand up to 2030[R]. Paris, France: International Energy Agency, 2005. | 2 | ZHANG S Y, LIU D, DENG W A, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062. | 3 | 梁文杰. 重质油化学[M]. 青岛: 中国石油大学出版社, 2000: 10-13. | 3 | LIANG W J. Heavy oil chemistry[M]. Qingdao: China University of Petroleum Press, 2000: 10-13. | 4 | SAHU R, SONG B J, IM J S, et al. A review of recent advances in catalytic hydrocracking of heavy residues[J]. Journal of Industrial & Engineering Chemistry, 2015, 27:12-24. | 5 | RANA M S, SAMANO V, ANCHEYTA J, et al. A review of recent advances on process technologies for upgrading of heavy oils and residua[J]. Fuel, 2007, 86(9): 1216-1231. | 6 | MOTAGHI M, SUBRAMANIAN A, ULRICH B. Slurry-phase hydrocracking-possible solution to refining margins[J]. Hydrocarbon Processing, 2011, 90(2): 37. | 7 | PRUDEN B B. Hydrocracking of bitumen and heavy oils at Canmet[J]. Canadian Journal of Chemical Engineering, 1978, 56(3): 277-280. | 8 | DRAGO G, GULTIAN J, KRASUK J, et al. Development of HDH process, a refiner’s tool for residual upgrading[J]. American Chemical Society Division of Petroleum Chemistry Preprints, 1990, 35(4): 584-592. | 9 | SCHUETZE B, HOFMANN H. How to upgrade heavy feeds[J]. Hydro-carbon Process, 1984, 63(2): 75-82. | 10 | THEODORE C, LESZEK L, BAKI O, et al. Hydrocracking process involving colloidal catalyst formed in situ: US5578197[P]. 1996-11-26. | 11 | CASTANEDA L C, MUNOZ J A D, ANCHEYTA J. Combined process schemes for upgrading of heavy petroleum[J]. Fuel, 2012, 100: 110-127. | 12 | MONTANARI R, MARCHIONNA M, PANARITI N, et al. Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues: WO 2004056946[P]. 2011-09-13. | 13 | AMOROSO A, COLPO J, RISPOLI G, et al. Advanced hydrocracking technology upgrades extra heavy oil[J]. Hydrocarbon Processing, 2009, 88(12): 39-46. | 14 | BELLUSSI G, RISPOLI G, MOLINARI D, et al. The role of MoS2 nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates[J]. Catalysis Science & Technology, 2013, 3(1): 176-182. | 15 | LI Y S, WANG J, JIANG L J, et al. Hydrocracking of heavy oil and residuum with a dispersing-type catalyst: US6004454[P]. 1999-12-21. | 16 | QUE G H, MEN C G, MENG C X, et al. Heavy oil hydrocracking process with multimetallic liquid catalyst in slurry bed: US6660157[P]. 2003-12-09. | 17 | 董明, 龙军, 侯焕娣, 等. 塔河渣油高温催化临氢热转化技术研究[J]. 石油炼制与化工, 2019, 50(12): 1-5. | 17 | DONG M, LONG J, HOU H D, et al. Study on Tahe residue thermal-cracking in hydrogen at high temperatures[J]. Petroleum Processing and Petrochemicals, 2019, 50(12): 1-5. | 18 | NGUYEN M T, NGUYEN N T, CHO J, et al. A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil[J]. Journal of Industrial & Engineering Chemistry, 2016, 43: 1-12. | 19 | AL-ATTAS T, ALI S A, ZAHIR M H, et al. Recent advances in heavy oil upgrading using dispersed catalysts[J]. Energy Fuels, 2019, 33(9): 7917-7949. | 20 | PANARITI N, BIANCO A D, PIERO G D, et al. Petroleum residue upgrading with dispersed catalysts: Part 2. Effect of operating conditions [J]. Applied Catalysis A: General, 2000, 204(2): 215-222. | 21 | 胡意文, 达志坚, 王子军. 氢气在二硫化钼上活化机理的研究进展[J]. 石油学报 (石油加工), 2015, 31(3): 812-820. | 21 | HU Y W, DA Z J, WANG Z J. Progress in mechanism study of hydrogen activation on MoS2[J]. Acta Petroleumica Sinica (Petroleum Processing), 2015, 31(3): 812-820. | 22 | FIXARI B, PEUREUX S, ELMOUCHNINO J, et al. New developments in deep hydroconversion of heavy oil residues with dispersed catalysts. 1. Effect of metals and experimental conditions[J]. Energy Fuels, 1994, 8(3): 588-592. | 23 | 许可, 侯焕娣, 董明, 等. 浆态床渣油加氢催化剂研究进展[J]. 现代化工, 2017, 37(5): 55-58. | 23 | XU K, HOU H D, DING M, et al. Research progress of catalysts for residual oil hydrogenation in slurry bed[J]. Modern Chemical Industry, 2017, 37(5): 55-58. | 24 | 张启修, 赵秦生. 钨钼冶金[M]. 北京: 冶金工业出版社, 2005: 227-237. | 24 | HANG Q X, ZHAO Q S. Tungsten and molybdenum metallurgy[M]. Beijing: Metallurgical Industry Press, 2005: 227-237. | 25 | WATANABE I, OTAKE M, YOSHIMOTO M, et al. Behaviors of oil-soluble molybdenum complexes to form very fine MoS2 particles in vacuum residue[J]. Fuel, 2002, 81(11/12): 1515-1520. | 26 | LIU C G, ZHOU J S, QUE G H, et al. Hydrocracking of Gudao residue with dispersed-phase Mo catalyst [J]. Fuel, 1994, 73(9): 1544-1550. | 27 | CHENG J, LIU Y H, LOU Y H, et al. Hydrocracking of Gudao residual oil with dispersed catalysts using supercritical water-syngas as a hydrogen source[J]. Petroleum Science and Technology, 2005, 23(11/12): 1453-1462. | 28 | INUKAI Y. Hydroliquefaction of Illinois No.6 coal with petroleum atmospheric residue using oil-soluble molybdenum catalyst[J]. Fuel Processing Technology, 1995, 43(2): 157-167. | 29 | CHEN B, XIANG S, QIAN G. Metal-organic frameworks with functional pores for recognition of small molecules[J]. Accounts of Chemical Research, 2010, 43(8): 1115-1124. | 30 | LI C, MENG H S, YANG T F, et al. Study on catalytic performance of oil-soluble iron-nickel bimetallic catalyst in coal/oil co-processing[J]. Fuel, 2018, 21(9): 30-36. | 31 | DU H, LI M, LIU D, et al. Slurry-phase hydrocracking of heavy oil and model reactant: effect of dispersed Mo catalyst[J]. Applied Petrochemical Research, 2015, 5(2): 89-98. | 32 | DU H, LIU D, LI M, et al. Effects of the temperature and initial hydrogen pressure on the isomerization reaction in heavy oil slurry-phase hydrocracking[J]. Energy Fuels, 2015, 29(2): 626-633. | 33 | PANARITI N, BIANCO A DEL, PIERO G DEL, et al. Petroleum residue upgrading with dispersed catalysts: Part 1. Catalysts activity and selectivity[J]. Applied Catalysis A: General, 2000, 204(2): 203-213. | 34 | NGUYEN T S, TAYAKOUT-FAYOLLE M, ROPARS M, et al. Hydroconversion of an atmospheric residue with a dispersed catalyst in a batch reactor: kinetic modeling including vapor-liquid equilibrium[J]. Chemical Engineering Science, 2013, 94(2): 14-23. | 35 | KENNEPOHL D, SANFORD E. Conversion of Athabasca bitumen with dispersed and supported Mo-based catalysts as a function of dispersed catalyst concentration[J]. Energy Fuels, 1996, 10(1): 229-234. | 36 | LI C, YANG T F, DENG W A, et al. Effects of iron() dodecylbenzenesulfonate on the slurry-phase hydrocracking of Venezuela fuel oil with an oil-soluble Mo catalyst [J]. Energy Fuels, 2016, 30(6): 4710-4716. | 37 | REZAEI H, ARDAKANI S J, SMITH K J. Study of MoS2 catalyst recycle in slurry-phase residue hydroconversion[J]. Energy Fuels, 2012, 26(11): 6540-6550. | 38 | REZAEI H, LIU X, ARDAKANI S J, et al. A study of cold lake vacuum residue hydroconversion in batch and semi-batch reactors using unsupported MoS2 catalysts [J]. Catalysis Today, 2010, 150(3/4): 244-254. | 39 | REZAEI H, ARDAKANI S J, SMITH K J. Comparison of MoS2 catalysts prepared from Mo-micelle and Mo-octoate precursors for hydroconversion of cold lake vacuum residue: catalyst activity, coke properties and catalyst recycle[J]. Energy Fuels, 2012, 26(5): 2768-2778. | 40 | BDWI E A, ALI S A, QUDDUS M R, et al. Kinetics of promotional effects of oil-soluble dispersed metal (Mo, Co, and Fe) catalysts on slurry phase hydrocracking of vacuum gas oil[J]. Energy Fuels, 2017, 31(3): 3132-3142. | 41 | KIM S H, KIM K D, LEE Y K. Effects of dispersed MoS2 catalysts and reaction conditions on slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2017, 34(7): 127-137. | 42 | JEONG H R, LEE Y K. Comparison of unsupported WS2 and MoS2 catalysts for slurry phase hydrocracking of vacuum residue [J]. Applied Catalysis A: General, 2019, 57(2): 90-96. |
|