1 | ARSHAD A, ALI H M, HABIB A, et al. Energy and exergy analysis of fuel cells: a review[J]. Thermal Science and Engineering Progress, 2019, 9: 308-321. | 2 | MORENO N G, MOLINA M C, GERVASIO D, et al. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 897-906. | 3 | 南皓雄, 党岱, 田新龙. 低铂燃料电池氧还原催化剂的制备技术研究进展[J]. 化工进展, 2018, 37(11): 4294-4302. | 3 | NAN H X, DANG D, TIAN X L. Recent progress in the preparation of oxygen reduction catalysts for low-platinum fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4294-4302. | 4 | WANG Y, CHEN K S, MISHLER J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007. | 5 | TAHERIAN R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265: 370-390. | 6 | SHANIAN A, SAVADOGO O. TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell[J]. Journal of Power Sources, 2006, 159(2): 1095-1104. | 7 | WANG Z, WANG Y, LI Z, et al. Investigation of C/Al-Cr-N multilayer coatings for stainless steel bipolar plate in polymer electrolyte membrane fuel cells[J]. Surface and Coatings Technology, 2014, 258: 1068-1074. | 8 | ZHANG Z, TANG J, WANG Y, et al. Electrodeposition of a novel Pd-Ni-W ternary alloy film on SS316L[J]. International Journal of Electrochemical Science, 2017, 12(7): 6180-6189. | 9 | BI F, PENG L, YI P, et al. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2016, 314: 58-65. | 10 | WANG Y, NORTHWOOD D O. An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells[J]. Journal of Power Sources, 2007, 165(1): 293-298. | 11 | CHA B C, YOU Y Z, HONG S T, et al. Nitride films as protective layers for metallic bipolar plates of polymer electrolyte membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2011, 36(7): 4565-4572. | 12 | LI Z, FENG K, WANG Z, et al. Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8421-8430. | 13 | FENG K, SHEN Y, LIU D, et al. Ni-Cr co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(2): 690-700. | 14 | CHOE C, CHOI H, HONG W, et al. Tantalum nitride coated AISI 316L as bipolar plate for polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(1): 405-411. | 15 | AUKLAND N, BOUDINA A, EDDY D S, et al. Alloys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates[J]. Journal of Materials Research, 2004, 19(6): 1723-1729. | 16 | L?DRE S, KONGSTEIN O E, OEDEGAARD A, et al. Materials for proton exchange membrane water electrolyzer bipolar plates[J]. International Journal of Hydrogen Energy, 2017, 42(5): 2713-2723. | 17 | WANG H, SWEIKART M A, TURNER J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2003, 115(2): 243-251. | 18 | XU J, HUANG H J, LI Z Y, et al. Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell[J]. Journal of Alloys and Compounds, 2016, 663: 718-730. | 19 | 左景伊, 金志强, 孙汝宏, 等. 在蚀孔、缝隙或应力腐蚀裂缝中的闭塞电池腐蚀的加速效应和临界pH值[J]. 北京化工学院学报, 1987, 14(3): 40-46. | 19 | ZUO J Y, JIN Z Q, SUN R H, et al. Accelerating effect and critical pH value of occluded cell corrosion within pits crevices or S.C. Cracks[J]. Journal of Beijing Institute of Chemical Technology, 1987, 14(3): 40-46. | 20 | National Institute of Standards and Technology. NIST X-ray photoelectron spectroscopy database, NIST standard reference database number 20[OL]. [2019-05-15]. . | 21 | FLEISCH T H, MAINS G J. An XPS study of the UV reduction and photochromism of MoO3 and WO3[J]. The Journal of Chemical Physics, 1982, 76(2): 780-786. | 22 | ROGERS J D, SUNDARAM V S, KLEIMAN G G, et al. High resolution study of the M45N67N67 and M45N45N67 Auger transitions in the 5d series[J]. Journal of Physics F: Metal Physics, 1982, 12(9): 2097-2102. | 23 | NEFEDOV V I, FIRSOV M N, SHAPLYGIN I S. Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data[J]. Journal of Electron Spectroscopy and Related Phenomena, 1982, 26(1): 65-78. | 24 | PEIGNON M C, CARDINAUD C, TURBAN G. A kinetic study of reactive ion etching of tungsten in SF6/O2 RF plasmas[J]. Journal of The Electrochemical Society, 1993, 140(2): 505-512. | 25 | BHATTARAI J, AKIYAMA E, HABAZAKI H, et al. Electrochemical and XPS studies of the corrosion behavior of sputter-deposited W-Nb alloys in concentrated hydrochloric acid solutions[J]. Corrosion Science, 1998, 40(1): 19-42. | 26 | MURATA M, WAKINO K, IKEDA S. X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: an example of the effect of polarization on chemical shifts[J]. Journal of Electron Spectroscopy and Related Phenomena, 1975, 6(5): 459-464. | 27 | SAIED S O, SULLIVAN J L, CHOUDHURY T, et al. A comparison of ion and fast atom beam reduction in TiO2[J]. Vacuum, 1988, 38(8): 917-922. | 28 | HO S F, CONTARINI S, RABALAIS J W. Ion-beam-induced chemical changes in the oxyanions (MOyn-) and oxides (MOx) where M=Cr, Mo, W, V, Nb, and Ta[J]. The Journal of Physical Chemistry, 1987, 91(18): 4779-4788. | 29 | LECUYER S, QUEMERAIS A, JEZEQUEL G. Composition of natural oxide films on polycrystalline tantalum using XPS electron take-off angle experiments[J]. Surface and Interface Analysis, 1992, 18(4): 257-261. | 30 | RIFFE D M, WERTHEIM G K. Ta(110) surface and subsurface core-level shifts and 4f7/2 line shapes[J]. Physical Review B, 1993, 47(11): 6672-6679. | 31 | ONG J L, LUCAS L C, RAIKAR G N, et al. Electrochemical corrosion analyses and characterization of surface-modified titanium[J]. Applied Surface Science, 1993, 72(1): 7-13. | 32 | BLASCO T, CAMBLOR M A, CORMA A, et al. The state of Ti in titanoaluminosilicates isomorphous with zeolite β[J]. Journal of The American Chemical Society, 1993, 115(25): 11806-11813. | 33 | SHI K, LI X, ZHAO Y, et al. Corrosion behavior and conductivity of TiNb and TiNbN coated steel for metallic bipolar plates[J]. Applied Sciences, 2019, 9, 2568. | 34 | YUAN L, WANG H M. Corrosion behaviors of a γ-toughened Cr13Ni5Si2/Cr3Ni5Si2 multi-phase ternary metal silicide alloy in NaCl solution[J]. Electrochimica Acta, 2008, 54(2): 421-429. | 35 | YANG F, ZHANG X, YANG H, et al. Corrosion behavior of electrodeposited Ni with normal and bimodal grain size distribution[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 424-436. | 36 | WU Z, ZHOU Y, LIN G, et al. An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2008, 182(1): 265-269. | 37 | LAI X, LIU D, PENG L, et al. A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells[J]. Journal of Power Sources, 2008, 182(1): 153-159. | 38 | KIM K M, KIM K Y. A new alloy design concept for austenitic stainless steel with tungsten modification for bipolar plate application in PEMFC[J]. Journal of Power Sources, 2007, 173(2): 917-924. | 39 | ARSHI N, LU J, LEE C G, et al. Effect of substrate temperature on the properties of electron beam deposited tantalum films[J]. Thin Solid Films, 2013, 546: 22-25. |
|