1 | 谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用[J]. 环境化学, 2018, 37(11): 2489-2508. | 1 | GU Deming, GUO Changsheng, FENG Qiyan, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation[J]. Environmental Chemistry, 2018, 37(11): 2489-2508. | 2 | LIU Yiqing, HE Xuexiang, FU Yongsheng, et al. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate[J]. Journal of Hazardous Materials, 2016, 305: 229-239. | 3 | NIE Minghua, YANG Yi, ZHANG Zhijian, et al. Degradation of chloram-phenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. | 4 | 张宏玲, 李森, 张杨, 等. 过渡金属离子活化过硫酸盐去除土壤中的芘[J]. 环境工程学报, 2016, 10(10): 6009-6014. | 4 | ZHANG Hongling, LI Sen, ZHANG Yang, et al. Removal of pyrene in contaminated soil by transition metal ions activated persulfate[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 6009-6014. | 5 | 杨世迎, 陈友媛, 胥慧真, 等. 过硫酸盐活化高级氧化新技术[J]. 化学进展, 2008(9): 1433-1438. | 5 | YANG Shiying, CHEN Youyuan, XU Huizhen, et al. A novel advanced oxidation technology based on activated persulfate[J]. Progress in Chemistry, 2008(9): 1433-1438. | 6 | MARCHESI M, ARAVENA R, SRA K S, et al. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe2+ activated persulfate[J]. Science of the Total Environment, 2012, 433: 318-322. | 7 | YAN Jingchun, LEI Min, ZHU Lihua, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1398-1404. | 8 | DONG Chengdi, CHEN Chiuwen, TSAI Meiling, et al. The efficacy and cytotoxicity of iron oxide-carbon black composites for liquid-phase toluene oxidation by persulfate[J]. Environmental Science and Pollution Research, 2019, 26(15): 14786-14796. | 9 | LAI Li, XIE Qiang, CHI Lina, et al. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide[J]. Journal of Colloid and Interface Science, 2016, 465: 76-82. | 10 | NIU Hongyun, ZHANG Di, ZHANG Shengxiao, et al. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole[J]. Journal of Hazardous Materials, 2011, 190(1): 559-565. | 11 | SINGHAL P, JHA S K, PANDEY S P, et al. Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles.[J]. Journal of Hazardous Materials, 2017, 335: 152-161. | 12 | ZHAO Donglin, ZHANG Qi, XUAN Han, et al. EDTA functionalized Fe3O4/graphene oxide for efficient removal of U() from aqueous solutions[J]. Journal of Colloid & Interface Science, 2017, 506: 300-307. | 13 | BORUAH P K, SHARMA B, HUSSAIN N, et al. Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect[J]. Chemosphere, 2016, 168: 1058-1067. | 14 | JUNG K W, CHOI B H, JEONG T U, et al. Facile synthesis of magnetic biochar/Fe3O4 nanocomposites using electro-magnetization technique and its application on the removal of acid orange 7 from aqueous media[J]. Bioresource Technology, 2016, 220: 672-676. | 15 | LIBRA J A, RO K S, KAMMANN C, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1): 71-106. | 16 | 吴艳姣, 李伟, 吴琼, 等. 水热炭的制备、性质及应用[J]. 化学进展, 2016, 28(1): 121-130. | 16 | WU Yanjiao, LI Wei, WU Qiong, et al. Preparation, properties and applications of hydrochar[J]. Progress in Chemistry, 2016, 28(1): 121-130. | 17 | YANG Wei, SHIMANOUCHI T, IWAMURA M, et al. Elevating the fuel properties of Humulus lupulus, Plumeria alba and Calophyllum inophyllum L. through wet torrefaction[J]. Fuel, 2015, 146: 88-94. | 18 | SALEMA A A, ANI F N. Microwave induced pyrolysis of oil palm biomass[J]. Bioresource Technology, 2011, 102(3): 3388-3395. | 19 | HU Chuangguang, Zngyuh MOU, LU Gewu, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption[J]. Physical Chemistry Chemical Physics, 2013, 15(31): 13038-13043. | 20 | 易蔓, 李婷婷, 李海红, 等. Ca/Mg负载改性沼渣生物炭对水中磷的吸附特性[J]. 环境科学, 2019, 40(3): 1318-1327. | 20 | YI Man, LI Tingting, LI Haihong, et al. Characteristics of phosphorus adsorption in aqueous solution by ca/mg-loaded biogas residue biochar[J]. Environmental Science, 2019, 40(3): 1318-1327. | 21 | BABI? B M, MILONJI? S K, POLOVINA M J, et al. Point zero charge and intrinsic equilibrium constants of activated carbon cloth[J]. Carbon, 1999, 37(3): 477-481. | 22 | CHEN Baoliang, JOHNSON E J, CHEFETZ B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility[J]. Environmental Science & Technology, 2005, 39(16): 6138-6146. | 23 | SONG Zhengguo, LIAN Fei, YU Zhihong, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242: 36-42. | 24 | 郭淑青, 董向元, 范晓伟, 等. 玉米秸秆水热炭化产物特性演变分析[J]. 农业机械学报, 2016, 47(4): 180-185. | 24 | GUO Shuqing, DONG Xiangyuan, FAN Xiaowei, et al. Characteristics of products from hydrothermal carbonization of corn stover[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 180-185. | 25 | SCHIMMELPFENNIG S, GLASER B. One step forward toward characterization: some important material properties to distinguish biochars[J]. Journal of Environment Quality, 2012, 41(4): 1001. | 26 | SPOKAS Kurt A. Review of the stability of biochar in soils: predictability of O∶C molar ratios[J]. Carbon Management, 2010, 1(2): 289-303. | 27 | 刘雨辰. 水热液化生物炭活化利用研究[D]. 上海: 复旦大学, 2014. | 27 | LIU Yuchen. Activating and utilization of hydrochar derived from hydrothermal liquefaction of biomass [D]. Shanghai: Fudan University, 2014. | 28 | LEVINE R B, PINNARAT T, SAVAGE P E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification[J]. Energy & Fuels, 2010, 24(9): 5235-5243. | 29 | 韩兰芳, 孙可, 康明洁, 等. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014(11): 1811-1820. | 29 | HAN Lanfang, SUN Ke, KANG Mingjie, et al. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J]. Environmental Chemistry, 2014(11): 1811-1820. | 30 | SOARES S, CAMINO G, LEVCHIK S. Comparative study of the thermal decomposition of pure cellulose and pulp paper[J]. Polymer Degradation and Stability, 1995, 49(2): 275-283. | 31 | PETERSON A A, LACHANCE R P, TESTER J W. Kinetic evidence of the maillard reaction in hydrothermal biomass processing: glucose-glycine interactions in high-temperature, high-pressure water[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2107-2117. | 32 | YAN Jingchun, HAN Lu, GAO Weiguo, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175: 269-274. | 33 | 李飞跃, 桂向阳, 刘晨, 等. 改性生物炭催化过硫酸盐脱色金橙Ⅱ[J]. 环境污染与防治, 2018, 40(11): 1207-1213. | 33 | LI Feiyue, GUI Xiangyang, LIU Chen, et al. Decoloration of dye acid orange 7 by modified biochar catalyzed persulfate[J]. Environmental Pollution & Control, 2018, 40(11): 1207-1213. | 34 | WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products[J]. Environmental Science & Technology, 2007, 41(3): 1010-1015. | 35 | 林青雯, 赵琪, 高梦凡, 等. Fe3O4/纤维素纳米复合材料的制备及其对亚甲基蓝的吸附[J]. 环境工程学报, 2016(11): 6451-6456. | 35 | LIN Qingwen, ZHAO Qi, GAO Mengfan, et al. Preparation of Fe3O4/cellulose nanocomposites and its adsorption to methylene blue[J]. Chinese Journal of Environmental Engineering, 2016(11): 6451-6456. | 36 | LENG Yanqiu, GUO Weilin, SHI Xiao, et al. Polyhydroquinone-coated Fe3O4 nanocatalyst for degradation of rhodamine b based on sulfate radicals[J]. Industrial & Engineering Chemistry Research, 2013, 52(38): 13607-13612. | 37 | HOU Liwei, ZHANG Hui, XUE Xiaofei. Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water[J]. Separation & Purification Technology, 2012, 84: 147-152. | 38 | JAIN R, MATHUR M, SIKARWAR S, et al. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments[J]. Journal of Environmental Management, 2007, 85(4): 956-964. | 39 | GUO Yupeng, ZHAO Jingzhe, ZHANG Hui, et al. Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions[J]. Dyes & Pigments, 2005, 66(2): 123-128. | 40 | NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. | 41 | STUMM Werner, MORGAN James J, et al. Aquatic chemistry: chemical equilibria and rates in natural waters[M]. 3rd. New York: John Wiley Sons, Inc., 1996: A277. | 42 | ZUO Zhihua, CAI Zhongli, KATSUMURA Y, et al. Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants[J]. Radiation Physics and Chemistry, 1999, 55(1): 15-23. | 43 | 毕晨, 施周, 周石庆, 等. EGCG强化Fe2+/过硫酸盐体系降解金橙G的研究[J]. 中国环境科学, 2017(10): 124-130. | 43 | BI Chen, SHI Zhou, ZHOU Shiqing, et al. Degradation of orange G by Fe2+/peroxydisulfate system with enhance of EGCG[J]. China Environmental Science, 2017(10): 124-130. | 44 | 卢洪波, 戴惠玉, 马玉鑫. 生物质三组分燃烧特性及动力学分析[J]. 农业工程学报, 2012, 28(17): 186-191. | 44 | LU Hongbo, DAI Huiyu, MA Yuxin. Combustion characteristics and dynamic analysis of three biomass components[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17): 186-191. | 45 | 邢献军, 杨静, 范方宇, 等. 木屑及其水热炭的热解特性和动力学对比[J]. 农业工程学报, 2017(4): 266-272. | 45 | XING Xianjun, YANG Jing, FAN Fangyu, et al. Comparison of pyrolysis characteristics and kinetics of sawdust and its hydrochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017(4): 266-272. | 46 | WU Chahsiung, CHANG Chingyuan, LIN Jyhping, et al. Thermal treatment of coated printing and writing paper in MSW: pyrolysis kinetics[J]. Fuel, 1997, 76(12): 1151-1157. | 47 | HWANG Inhee, AOYAMA H, MATSUTO T, et al. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water[J]. Waste Management, 2012, 32(3): 410-416. | 48 | MA?EK O, BUDARIN V, GRONNOW M, et al. Microwave and slow pyrolysis biochar-comparison of physical and functional properties[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 41-48. | 49 | 张新伟, 王鑫, 陈平, 等. 复合微波吸收剂辅助生物质裂解制取生物油研究[J]. 当代化工, 2014(8): 1407-1410. | 49 | ZHANG Xinwei, WANG Xin, CHEN Ping, et al. Study on preparation of bio-oils by complex microwave absorbent-assisted pyrolysis of biomass[J]. Contemporary Chemical Industry, 2014(8): 1407-1410. | 50 | KHAN A A, JONG W D, JANSENS P J, et al. Biomass combustion in fluidized bed boilers: potential problems and remedies[J]. Fuel Processing Technology, 2009, 90(1): 21-50. | 51 | KHAN M Y, MANGRICH A S, SCHULTZ J, et al. Green chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116(1): 42-48. | 52 | LEI Yang, ZHANG Hui, WANG Jiawen, et al. Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system[J]. Chemical Engineering Journal, 2015, 270: 73-79. | 53 | 史宸菲, 李雨濛, 冯瑞杰, 等. 蓝藻生物炭的制备及对过硫酸盐的活化效能[J]. 生态与农村环境学报, 2017, 33(12): 1140-1145. | 53 | SHI Chenfei, LI Yumeng, FENG Ruijie, et al. Preparation of biochar from cyanobacteria and function of the biochar for persulfate activation[J]. Journal of Ecology and Rural Environment, 2017, 33(12): 1140-1145. |
|