1 | BURKE T A, CASCIO W E, COSTA D L, et al. Rethinking environmental protection: meeting the challenges of a changing world[J]. Environmental Health Perspectives, 2017, 125(3): A43-A49. | 2 | YANG W, LI Y J, FENG Y Y. High electrochemical performance from oxygen functional groups containing porous activated carbon electrode of supercapacitors[J]. Materials, 2018, 11(12): 2455. | 3 | FENG Y Y, HUANG H B, YANG W, et al. Sulfur-doped microporous carbons developed from coal for enhanced capacitive performances of supercapacitor electrodes[J]. Integrated Ferroelectrics, 2018, 188(1): 44-56. | 4 | SALANNE M, ROTENBERG B, NAOI K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 16070. | 5 | YANG W, ZHAO W J, FENG Y Y, et al. Nitrogen and oxygen-containing microporous carbon spheres as supercapacitor electrode materials for energy storage[J]. Nanoscience and Nanotechnology Letters, 2018, 10(7): 1017-1024. | 6 | ZHONG C, DENG Y, HU W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. | 7 | TANG Y R, CHENG B. 3D self-supported hierarchical Ni, Co architectures with integrated capacitive performance and enhanced electronic conductivity for supercapacitors[J]. Energy, 2016, 112: 755-761. | 8 | 冯艳艳, 黄宏斌, 张心桔, 等. 高性能镍钴层状双金属氢氧化物的制备及其电化学性能研究[J]. 物理学报, 2017, 66(24): 248202. | 8 | FENG Yanyan, HUANG Hongbin, ZHANG Xinju, et al. Synthesis and electrochemical properties of Ni-Co layered double hydroxides with high performance[J]. Acta Physica Sinica, 2017, 66(24): 248202. | 9 | DAI S G, LIU J L, WANG C S, et al. Hierarchical porous nanostructures of manganese () oxyhydroxide for all-solid-state flexible supercapacitors[J]. Energy Technology, 2016, 4(11): 1450-1454. | 10 | KOVALENKO V L, KOTOK V A, SYKCHIN A A, et al. Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications[J]. Journal of Solid State Electrochemistry, 2017, 21(3): 1-9. | 11 | GOU J X, XIE S L, LIU Y R, et al. Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials[J]. Electrochimica Acta, 2016, 210: 915-924. | 12 | ZHAO Y, HU L F, ZHAO S Y, et al. Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance[J]. Advanced Functional Materials, 2016, 26(23): 4085-4093. | 13 | CHEN J, XU J, ZHOU S, et al. Amorphous nanostructured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitors[J]. Nano Energy, 2016, 21: 145-153. | 14 | PAULRAJ S, JAYAVEL R. Microwave-assisted synthesis of Ru and Ce doped tungsten oxide for supercapacitor electrodes[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(16): 13794-13802. | 15 | ISMAIL E, KHAMLICH S, DHLAMINI M, et al. Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications[J]. RSC Advances, 2016, 6(90): 86843-86850. | 16 | ZHANG Y F. Designed synthesis and supercapacitor electrode of V2O3@C core-shell structured nanorods with excellent pseudo-capacitance in Na2SO4 neutral electrolyte[J]. Chemistry Select, 2018, 3(5): 1577-1584. | 17 | WANG Q Y, ZOU Y J, XIANG C L, et al. High-performance supercapacitor based on V2O5/carbon nanotubes-super activated carbon ternary composite[J]. Ceramics International, 2016, 42(10): 12129-12135. | 18 | AUDICHON T, GUENOT B, BARANTON S, et al. Preparation and characterization of supported RuxIr(1-x)O2, nano-oxides using a modified polyol synthesis assisted by microwave activation for energy storage applications[J]. Applied Catalysis B: Environmental, 2017, 200: 493-502. | 19 | SHEN J J, LI X C, WAN L, et al. An asymmetric supercapacitor with both ultra-high gravimetric and volumetric energy density based on 3D Ni(OH)2/MnO2@carbon nanotube and activated polyaniline-derived carbon[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 668-676. | 20 | XIONG G P, HE P G, WANG D N, et al. Hierarchical Ni-Co hydroxide petals on mechanically robust graphene petal foam for high-energy asymmetric supercapacitors[J]. Advanced Functional Materials, 2016, 26(30): 5460-5470. | 21 | NADERI H R, NOROUZI P, GANJALI M R. Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite[J]. Applied Surface Science, 2016, 366: 552-560. | 22 | 冯艳艳, 黄宏斌, 杨文, 等. 镍钴双金属氢氧化物/乙炔黑复合材料的制备及其电化学性能[J]. 化工进展, 2018, 37(11): 4378-4383. | 22 | FENG Yanyan, HUANG Hongbin, YANG Wen, et al. Preparation and electrochemical property of Ni-Co layered double hydroxides/acetylene black composites[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4378-4383. | 23 | XIONG C Y, LI T H, DANG A L, et al. Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode[J]. Journal of Power Sources, 2016, 306: 602-610. | 24 | JIANG L C, ZHANG W D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres[J]. Sensors and Actuators B: Chemical, 2015, 211: 385-391. | 25 | SUN X M, LI Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition, 2004, 43(5): 597-601. | 26 | ZHAO J W, CHEN J L, XU S M, et al. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors[J]. Advanced Functional Materials, 2014, 24(20): 2938-2946. | 27 | LI M, LIU F, CHENG J P, et al. Enhanced performance of nickel-aluminum layered double hydroxide nanosheets/carbon nanotubes composite for supercapacitor and asymmetric capacitor[J]. Journal of Alloys and Compounds, 2015, 635: 225-232. | 28 | LEI Y, LI J, WANG Y Y, et al. Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1773-1780. | 29 | MARCO J F, GANCEDO J R, GRACIA M, et al. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study[J]. Journal of Solid State Chemistry, 2000, 153(1): 74-81. | 30 | KIM J G, PUGMIRE D L, BATTAGLIA D, et al. Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy[J]. Applied Surface Science, 2000, 165(1): 70-84. | 31 | LIN J H, LIU Y L, WANG Y H, et al. Rational construction of nickel cobalt sulfide nanoflakes on CoO nanosheets with the help of carbon layer as the battery-like electrode for supercapacitors[J]. Journal of Power Sources, 2017, 362: 64-72. | 32 | LV J L, WANG Z Q, MIURA H D. Facile synthesis of mesoporous NiO nanoflakes on graphene foam and its electrochemical properties for supercapacitor application[J]. Solid State Communications, 2018, 269: 45-49. | 33 | ZHAO J S, LIU H, ZHANG Q. Preparation of NiO nanoflakes under different calcination temperatures and their supercapacitive and optical properties[J]. Applied Surface Science, 2017, 392: 1097-1106. | 34 | SENTHILKUMAR V, KADUMUDI F B, HO N T, et al. NiO nanoarrays of a few atoms thickness on 3D nickel network for enhanced pseudocapacitive electrode applications[J]. Journal of Power Sources, 2016, 303: 363-371. | 35 | YANG W, FENG Y Y, WANG N, et al. Facile microwave-assisted synthesis of sheet-like cobalt hydroxide for energy-storage application: effect of the cobalt precursors[J]. Journal of Alloys and Compounds, 2015, 644: 836-845. | 36 | LIANG Y Y, LI H L, ZHANG X G. A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes[J]. Materials Science and Engineering A, 2008, 473(1/2): 317-322. |
|