[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011, 334(6058):928-935. [2] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303. [3] ZU C X, LI H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8):2614-2624. [4] BLOOM I, TRAHEY L, ABOUIMRANE A, et al. Effect of interface modifications on voltage fade in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 cathode materials[J]. Journal of Power Sources,2014, 249:509-514. [5] PING L, HUANG L, CARDINALI B, et al. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance[J]. Applied Materials & Interfaces, 2013, 5(11):5330-5335. [6] BELHAROUAK I, JOHNSON C, AMINE K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4[J]. Electrochemistry Communications, 2005, 7(10):983-988. [7] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:a perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176. [8] 陈冠荣《, 化工百科全书》部. 化工百科全书(九卷)[M]. 北京:化学工业出版社, 1995. CHEN G R, Chemical encyclopedia. Chemical encyclopedia (Volume IX)[M]. Beijing:Chemical Industry Press,1995. [9] MA L, ABNEY C, LIN W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1248-1256. [10] 郝召民, 杜利利, 王中英,等. 功能MOFs材料的研究进展[J]. 化学研究, 2016, 27(2):144-151. HAO Z M, DOU L L, WANG Z Y, et al. Research progress in functional MOFs materials[J]. Chemical Research, 2016, 27(2):144-151. [11] MEILIKHOV M, FURUKAWA S, HIRAI K, et al. Binary janus porous coordination polymer coatings for sensor devices with tunable analyte affinity[J]. Angewandte Chemie International Edition, 2013, 52(1):341-345. [12] ZHAO D, YUAN D, ZHOU H C. The current status of hydrogen storage in metal-organic frameworks[J]. Energy & Environmental Science, 2008, 1(2):222-235. [13] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Cheminform, 2009, 38(5):1477-1504. [14] BAI L, TU B, QI Y, et al. Enhanced performance in gas adsorption and Li ion batteries by docking Li+ in a crown ether-based metal-organic framework[J]. Chemical Communications, 2016, 52(14):3003-3006. [15] 翟睿, 焦丰龙, 林虹君,等. 金属有机框架材料的研究进展[J]. 色谱, 2014, 32(2):107-116. ZHAI R, JIAO F L, LIN H J, et al. Research progress of metal organic framework materials[J]. Chromatography,2014, 32(2):107-116. [16] 周馨慧, 李洪辉. 金属-有机骨架(MOFs)的最新研究进展[J]. 南京邮电大学学报:自然科学版, 2012, 32(3):100-110. ZHOUXH,LIHH.Recentadvancesinmetal-organicframeworks (MOFs)[J]. Journal of Nanjing University of Posts andTelecommunications:NaturalScienceEdition,2012,32(3):100-110. [17] ZHANG Y, LIN B, SUN Y, et al. Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Advances,2015, 5(72):58100-58106. [18] LIU B, SHIOYAMA H, JIANG H, et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48(2):456-463. [19] XIA W, QIU B, XIA D, et al. Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage[J]. Scientific Reports, 2013, 3(6)1935. [20] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149):974. [21] ZHENG J, TIAN J, WU D, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters, 2014, 14(5):2345-2352. [22] BAO W, ZHANG Z, QU Y, et al. Confine sulfur in mesoporous metalorganic framework@reduced graphene oxide for lithium sulfur battery[J]. Journal of Alloys & Compounds, 2014, 582(2):334-340. [23] WANG Z, LI X, CUI Y, et al. A metal-organic framework with open metal sites for enhanced confinement of sulfur and lithium-sulfur battery of long cycling life[J]. Crystal Growth & Design, 2013, 13(11):5116-5120. [24] SHEN L, SONG H, WANG C. Metal-organic frameworks triggered high-efficiency Li storage in Fe-based polyhedral nanorods for lithiumion batteries[J]. Electrochimica Acta, 2017, 235:595-603. [25] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3):174-191. ZHANG H, ZHOU Y J, SONG X K. Advanced functional materials based on metal-organic framework precursors[J]. Chemical Progress, 2015, 27(2/3):174-191. [26] HUANG G, ZHANG F, DU X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9(2):1592-1599. [27] JIN Y, ZHAO C, SUN Z, et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries[J]. RSC Advances, 2016, 6(36):30763-30768. [28] 李泓, 吕迎春. 电化学储能基本问题综述[J]. 电化学, 2015, 21(5):412-424. LI H, LÜ Y C. Review of basic problems of electrochemical energy storage[J]. Electrochemistry, 2015, 21(5):412-424. [29] LI X, CHENG F, ZHANG S, et al. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1, 3, 5-benzenetribenzoate)2[J]. Journal of Power Sources, 2006, 160(1):542-547. [30] LIU Q, YU L, WANG Y, et al. Manganese-based layered coordination polymer:synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries[J]. Inorganic Chemistry, 2013, 52(6):2817-2822. [31] AN T, WANG Y, TANG J, et al. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage[J]. Journal of Colloid & Interface Science, 2015, 445:320-325. [32] JIN Y, ZHAO C, LIN Y, et al. Fe-based metal-organic framework and its derivatives for reversible lithium storage[J]. Journal of Materials Science & Technology, 2017(8):768-774. [33] ZHANG Z, YOSHIKAWA H, AWAGA K. Monitoring the solid-state electrochemistry of Cu(2, 7-AQDC) (AQDC=anthraquinone dicarboxylate) in a lithium battery:coexistence of metal and ligand redox activities in a metal-organic framework[J]. Journal of the American Chemical Society, 2014, 136(46):16112-16115. [34] GONG T, LOU X, GAO E Q, et al. Pillared-layer metal-organic frameworks for improved lithium-ion storage performance[J]. ACS Applied Materials & Interfaces, 2017,9(26):21839-21847. [35] LI C, HU X, LOU X, et al. The organic-moiety-dominated Li+ intercalation/deintercalation mechanism of a cobalt-based metalorganic framework[J]. Journal of Materials Chemistry A, 2016, 4(41):16245-16251. [36] LOU X, HU X, LI C, et al. Room-temperature synthesis of cobalt 2,3,5, 6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries[J]. New Journal of Chemistry, 2017, 41(4):1813-1819. [37] ZHANG Y, NIU Y B, LIU T, et al. A nickel-based metal-organic framework:a novel optimized anode material for Li-ion batteries[J]. Materials Letters, 2015, 161:712-715. [38] LI T, LI C, HU X, et al. Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenetetracarboxylate metal-organic framework with high capacity[J]. RSC Advances,2016, 6(66):61319-61324. [39] AN T, WANG Y, TANG J, et al. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage[J]. Journal of Colloid & Interface Science, 2015, 445:320-325. [40] HAN X, YI F, SUN T, et al. Synthesis and electrochemical performance of Li and Ni 1, 4, 5, 8-naphthalenetetracarboxylates as anodes for Li-ion batteries[J]. Electrochemistry Communications, 2012, 25(1):136-139. [41] LOU X, NING Y, LI C, et al. Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms[J]. Science China Materials, 2018,61(8):1040-1048. [42] LIAO Y, LI C, LOU X, et al. Highly reversible lithium storage in cobalt 2, 5-dioxido-1, 4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance[J]. Journal of Colloid & Interface Science, 2017, 506:365-372. [43] LIN Y, ZHANG Q, ZHAO C, et al. An exceptionally stable functionalized metal-organic framework for lithium storage[J]. Chemical Communications, 2015, 51(4):697-699. [44] ZHANG Z, YOSHIKAWA H, AWAGA K. Discovery of a "bipolar charging" mechanism in the solid-state electrochemical process of a flexible metal-organic framework[J]. Chemistry of Materials, 2016, 28(5):1298-1303. [45] DONG C, XU L. Cobal-and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(8):7160-7168. [46] AN Y, FEI H, ZHANG Z, et al. A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs[J]. Chemical Communications, 2017, 53(59):8360-8363. |