化工进展 ›› 2018, Vol. 37 ›› Issue (12): 4596-4605.DOI: 10.16085/j.issn.1000-6613.2017-2561
李璐伶1,3, 樊栓狮1,2, 温永刚3, 李淇2,3, 陈秋雄3
收稿日期:
2017-12-12
修回日期:
2018-02-09
出版日期:
2018-12-05
发布日期:
2018-12-05
通讯作者:
樊栓狮,教授,博士生导师。
作者简介:
李璐伶(1988-),女,博士,主要从事气体水合物技术研究。E-mail:lulinglu88@foxmail.com。
基金资助:
LI Luling1,3, FAN Shuanshi1,2, WEN Yonggang3, LI Qi2,3, CHEN Qiuxiong3
Received:
2017-12-12
Revised:
2018-02-09
Online:
2018-12-05
Published:
2018-12-05
摘要: 介绍了国内外水合物法CH4/CO2分离技术的研究现状。首先综述了针对该工艺的促进强化措施,主要包括热力学促进、动力学促进与综合促进。其中,热力学促进能改变反应条件,但会降低分离效率;动力学促进能提高反应速率,但不能改变反应条件;综合促进集合了前两者的优点,但技术还不成熟,是未来的研究重点。接着,讨论了针对该过程的数学模型,主要为热力学模型和动力学模型。目前,所建立的热力学模型多是针对无促进作用体系,且不能同时用于准确地计算相平衡条件和各项组成;动力学模型主要针对水合物生长过程。然后分析了针对该工艺的流程分析现状,即主要停留在实验阶段和平衡条件下的模型计算。最后,基于现状分析,认为提高反应效率,强化热力学、动力学促进和完善热力学、动力学模型等是今后主要的研究方向。
中图分类号:
李璐伶, 樊栓狮, 温永刚, 李淇, 陈秋雄. 水合物法分离CH4/CO2研究现状及展望[J]. 化工进展, 2018, 37(12): 4596-4605.
LI Luling, FAN Shuanshi, WEN Yonggang, LI Qi, CHEN Qiuxiong. Hydrate based gas separation technology for CH4/CO2 mixtures: a review[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4596-4605.
[1] CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource:prospects and challenges[J]. Applied Energy, 2016, 162:1633-1652. [2] LEE Y, KIM Y, LEE J, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter[J]. Applied Energy, 2015, 150(s):120-127. [3] CHEN Q, LIU T. Biogas system in rural China:Upgrading from decentralized to centralized?[J]. Renewable and Sustainable Energy Reviews, 2017, 78(s):933-944. [4] GU H, SONG G, XIAO J, et al. Thermodynamic analysis of the biomass-to-synthetic natural gas using chemical looping technology with CaO sorbent[J]. Energy & Fuels, 2013, 27(8):4695-4704. [5] 杨桦,王凤江,杨涛. 含CO2气井防腐工艺技术[J]. 天然气工业, 2007, 27(11):3. YANG Hua, WANG Fengjiang, YANG Tao. Anti-corrosion technology in gas wells with CO2[J] Natural Gas Industry, 2007, 27(11):3. [6] EL HADRI N, QUANG D V, GOETHEER E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process[J]. Applied Energy, 2016, 30(9):7481-7488. [7] ZHU L, LI L, ZHANG Z, et al. Thermodynamics of hydrogen production based on coal gasification integrated with a dual chemical looping process[J]. Chemical Engineering & Technology, 2016, 39(10):1912-1920. [8] 于干. 化学吸收法/变压吸附法脱除沼气中CO2的实验研究[D]. 杭州:浙江工业大学, 2013. YU Gan. Study on removal of carbon dioxide from biogas by chemical absorption and/pressure swing adsorption[D]. Hangzhou:Zhejiang University of Technology, 2013. [9] OFORI-BOATENG C, KWOFIE E. Water scrubbing:a better option for biogas purification for effective storage[J]. World Applied Science Journal, 2009, 5(3):122-125. [10] RASI S, LÄNTELÄ J, RINTALA J. Upgrading landfill gas using a high pressure water absorption process[J]. Fuel, 2014, 115:539-543. [11] THAMBIMUTHU M G I C K. CO2 capture technologies and opportunities in Canada:" Strawman document for CO2 capture and storage technology roadmap"[C]//Canadian CC&S Technology Roadmap Workshop, At Calgary, 2003:36. [12] DASHTI H, ZHEHAO YEW L, LOU X. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23:195-207. [13] KARIMI S, KORELSKIY D, MORTAZAVI Y, et al. High flux acetate functionalized silica membranes based on in-situ co-condensation for CO2/N2 separation[J]. Journal of Membrane Science, 2016, 520:574-582. [14] ADISASMITO S, FRANK R J, SLOAN E D. Hydrates of carbon dioxide and methane mixtures[J]. Journal of Chemical & Engineering Data, 1991, 36(1):68-71. [15] FAN S-S, GUO T-M. Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions[J]. Journal of Chemical & Engineering Data, 1999, 44(4):829-832. [16] NG H-J, ROBINSON D B. Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol[J]. Fluid Phase Equilibria, 1985, 21(1):145-155. [17] ROBINSON D B, METHA B R. Hydrates in the propanecarbon dioxide-water system[J]. Journal of Canadian Petroleum Technology, 1971, 10(1):4 [18] WANG F, FU S, GUO G, et al. Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture[J]. Energy, 2016, 104(s):76-84. [19] GOEL N. In situ methane hydrate dissociation with carbon dioxide sequestration:current knowledge and issues[J]. Journal of Petroleum Science and Engineering, 2006, 51(3):169-184. [20] KIM T H, CHO J, LEE K S. Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects[J]. Applied Energy, 2017, 190:1195-1206. [21] HAWKINS R E, DAVIDSON D W. Dielectric relaxation in the clathrate hydrates of some cyclic ethers[J]. The Journal of Physical Chemistry, 1966, 70(6):1889-1894. [22] SEO Y-T, LEE H. Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures[J]. The Journal of Physical Chemistry B, 2001, 105(41):10084-10090. [23] BELANDRIA V, MOHAMMADI A H, RICHON D. Phase equilibria of clathrate hydrates of methane+carbon dioxide:new experimental data and predictions[J]. Fluid Phase Equilibria, 2010, 296(1):60-65. [24] HERRI J M, BOUCHEMOUA A, KWATERSKI M, et al. Gas hydrate equilibria for CO2-N2 and CO2-CH4 gas mixtures——experimental studies and thermodynamic modelling[J]. Fluid Phase Equilibria, 2011, 301(2):171-190. [25] SERVIO P, LAGERS F, PETERS C, et al. Gas hydrate phase equilibrium in the system methane-carbon dioxide-neohexane and water[J]. Fluid Phase Equilibria, 1999, 15(s):795-800. [26] ZANG X, LIANG D. Phase equilibrium data for semiclathrate hydrate of synthesized binary CO2/CH4 gas mixture in tetra-n-butylammonium bromide aqueous solution[J]. Journal of Chemical & Engineering Data, 2017, 62(2):851-856. [27] MOHAMMADI A H, ESLAMIMANESH A, RICHON D. Semi-clathrate hydrate phase equilibrium measurements for the CO2+H2/CH4+tetra-n-butylammonium bromide aqueous solution system[J]. Chemical Engineering Science, 2013, 94(s):284-290. [28] FAN S, LI Q, NIE J, et al. Semiclathrate hydrate phase equilibrium for CO2/CH4 gas mixtures in the presence of tetrabutylammonium halide(bromide, chloride, or fluoride)[J]. Journal of Chemical & Engineering Data, 2013, 58(11):3137-3141. [29] PARTOON B, NASHED O, KASSIM Z, et al. Gas hydrate equilibrium measurement of methane + carbon dioxide + tetrahydrofuran + water system at high CO2 concentrations[J]. Procedia Engineering, 2016, 148(s):1220-1224. [30] LEE Y-J, KAWAMURA T, YAMAMOTO Y,et al. Phase equilibrium studies of tetrahydrofuran(THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 hydrates[J]. Journal of Chemical & Engineering Data, 2012, 57(12):3543-3548. [31] QING S-L, ZHONG D-L, YI D-T, et al. Phase equilibria and dissociation enthalpies for tetra-n-butylammonium chloride semiclathrate hydrates formed with CO2, CH4, and CO2+CH4[J]. The Journal of Chemical Thermodynamics, 2018, 117:54-59. [32] SALES SILVA L P, DALMAZZONE D, STAMBOULI M, et al. Phase behavior of simple tributylphosphine oxide(TBPO) and mixed gas(CO2, CH4 and CO2+CH4)+TBPO semiclathrate hydrates[J]. The Journal of Chemical Thermodynamics, 2016, 102(s):293-302. [33] SALES SILVA L P, DALMAZZONE D, STAMBOULI M, et al. Phase equilibria of semi-clathrate hydrates of tetra-n-butyl phosphonium bromide at atmospheric pressure and in presence of CH4 and CO2+CH4[J]. Fluid Phase Equilibria, 2016, 413(s):28-35. [34] LEE Y J, KAWAMURA T, YAMAMOTO Y, et al. Phase equilibrium studies of tetrahydrofuran(THF) + CH4, THF + CO2, CH4 + CO2, and THF+CO2+CH4 hydrates[J]. Journal of Chemical & Engineering Data, 2012, 57(12):3543-3548. [35] RICAURTE M, DICHARRY C, BROSETA D, et al. CO2 removal from a CO2-CH4 gas mixture by clathrate hydrate formation using THF and SDS as water-soluble hydrate promoters[J]. Industrial & Engineering Chemistry Research, 2013, 52(2):899-910. [36] 聂江华. 基于水合物法分离天然气中二氧化碳研究[D]. 广州:华南理工大学, 2012. NIE Jianghua. Study on separate carbon dioxide from natural gas based on clathrate hydrate technology[D].Guangzhou:South China University of Technology, 2012. [37] ZANG X, LIANG D, WU N. Investigation of CO2 separation from synthesis CO2/CH4 mixture utilizing tetra-n-butyl ammonium bromide semi-hydrate[J]. Canadian Journal of Chemical Engineering, 2016, 94(9):1792-1800. [38] XIA Z M, LI X S, CHEN Z Y, et al. Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent[J]. Applied Energy, 2016, 162:1153-1159. [39] LI Q, FAN S, WANG Y, et al. CO2 Removal from biogas based on hydrate formation with tetra-n-butylammonium bromide solution in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate[J]. Energy & Fuels, 2015, 29(5):3143-3148. [40] XIA Z M, LI X S, CHEN Z Y,et al. Hydrate-based acidic gases capture for clean methane with new synergic additives[J]. Applied Energy, 2017, 207:584-593. [41] MURAKAMI T, KURITSUKA H, FUJⅡ H, et al. Forming a structure-H hydrate using water and methylcyclohexane jets impinging on each other in a methane atmosphere[J]. Energy & Fuels, 2009, 23(3):1619-1625. [42] 罗艳托, 朱建华, 陈光进. 鼓泡塔中甲烷水合物生成现象的观测[J]. 石油学报(石油加工), 2006(1):84-89. LUO Yantuo, ZHU Jianhua, CHEN Guangjin. Phenomena observation of methane hydrate formation in bubble column[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2006(1):84-89. [43] LINGA P, KUMAR R, LEE J D, et al. A new apparatus to enhance the rate of gas hydrate formation:application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4):630-637. [44] SARSHAR M, ESMAEILZADEH F, FATHIKALAJAHI J. Study of capturing emitted CO2 in the form of hydrates in a tubular reactor[J]. Chemical Engineering Communications, 2009, 196(11):1348-1365. [45] TAJIMA H, NAGATA T, ABE Y, et al. HFC-134a hydrate formation kinetics during continuous gas hydrate formation with a kenics static mixer for gas separation[J]. Industrial & Engineering Chemistry Research, 2010, 49(5):2525-2532. [46] LEE J, SHIN C, LEE Y. Experimental investigation to improve the storage potentials of gas hydrate under the unstirring condition[J]. Energy & Fuels, 2010, 24(2):1129-1134. [47] KUMAR A, SAKPAL T, LINGA P, et al.. Enhanced carbon dioxide hydrate formation kinetics in a fixed bed reactor filled with metallic packing[J]. Chemical Engineering Science, 2015, 122(s):78-85. [48] YANG L, FAN S, WANG Y, et al. Accelerated formation of methane hydrate in aluminum foam[J]. Industrial & Engineering Chemistry Research, 2011, 50(20):11563-11569. [49] OKUTANI K, KUWABARA Y, MORI Y H. Surfactant effects on hydrate formation in an unstirred gas/liquid system:an experimental study using methane and sodium alkyl sulfates[J]. Chemical Engineering Science, 2008, 63(1):183-194. [50] LINGA P, DARABOINA N, RIPMEESTER J A, et al. Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel[J]. Chemical Engineering Science, 2012, 68(1):617-623. [51] 杨晓西, 丁静, 杨建平, 等. 水合物分离二氧化碳气体的研究[J]. 东莞理工学院学报, 2006, 14(3):5. YANG Xiaoxi, DING Jing, YANG Jianping, et al. Research on separation of carbon dioxide gas hydrate[J]. Journal of Dongguan University of Technology, 2006,14(3):5. [52] ZHONG D-L, DING K, LU Y-Y, et al. Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions[J]. Applied Energy, 2016, 162(s):1619-1626. [53] LI Z, ZHONG D-L, LU Y-Y, et al. Enhanced separation of carbon dioxide from a CO2 + CH4 gas mixture using a hybrid adsorption-hydrate formation process in the presence of coal particles[J]. Journal of Natural Gas Science and Engineering, 2016, 35(Part B):1472-1479. [54] 杨亮. 甲烷水合物生成的静态强化技术[D]. 广州:华南理工大学, 2013. YANG Liang. Static enhancement technology of methane hydrate formation[D]. Guangzhou:South China University of Technology, 2013. [55] KIM D, AHN Y-H, LEE H. Phase equilibria of CO2 and CH4 hydrates in intergranular meso/macro pores of mil-53 metal organic framework[J]. Journal of Chemical & Engineering Data, 2015, 60(7):2178-2185. [56] ZHONG D-L, LI Z, LU Y-Y, et al. Evaluation of CO2 removal from a CO2+CH4 gas mixture using gas hydrate formation in liquid water and THF solutions[J]. Applied Energy, 2015, 158(s):133-141. [57] RICAURTE M, DICHARRY C, BROSETA D, et al. CO2 removal from a CO2-CH4 gas mixture by clathrate hydrate formation using THF and SDS as water-soluble hydrate promoters[J]. Industrial & Engineering Chemistry Research, 2013, 52(2):899-910. [58] ZHONG D-L, LI Z, LU Y-Y, et al. Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve[J]. Industrial & Engineering Chemistry Research, 2016, 55(29):7973-7980. [59] WAALS J H V D, PLATTEEUW J C. Clathrate solutions[M]. New York:John Wiley & Sons, Inc.,2007:1-57. [60] PARRISH W R, PRAUSNITZ J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Process Design and Development, 1972, 11(1):26-35. [61] NG H-J, ROBINSON D B. The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(4):293-298. [62] JOHN V T, PAPADOPOULOS K D, HOLDER G D. A generalized model for predicting equilibrium conditions for gas hydrates[J]. AIChE Journal, 1985, 31(2):252-259. [63] DU Y, GUO T M. Prediction of hydrate formation for systems containing methanol[J]. Chemical Engineering Science, 1990, 45(4):893-900. [64] CHEN G J, GUO T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2):145-151. [65] KLAUDA J B, SANDLER S I. A fugacity model for gas hydrate phase equilibria[J]. Industrial & Engineering Chemistry Research, 2000, 39(9):3377-3386. [66] ZAREI H, BOHLOOR F, OMIDI A. Excess molar enthalpies of ethane-1,2-diamine plus primary and secondary alkanols(C1-C4) and correlation with Redlich-Kister, Wilson, NRTL and UNIQUAC models at T=298 K[J]. The Journal of Chemical Thermodynamics, 2017, 107:163-169. [67] 张乃文,陈嘉宾,于志家. 化工热力学[M].大连:大连理工大学出版社,2010:6. ZHANG Naiwen,CHEN Jiabin,YU Zhijia. Chemical engineering theromdynamics[M]. Dalian:Dalian Technic University Press,2010:6. [68] LI X S, WU H J, LI Y G, et al. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT[J]. The Journal of Chemical Thermodynamics, 2007, 39(3):417-425. [69] SFAXI I B A, BELANDRIA V, MOHAMMADI A H, et al. Phase equilibria of CO2+N2 and CO2+CH4 clathrate hydrates:experimental measurements and thermodynamic modelling[J]. Chemical Engineering Science, 2012, 84(s):602-611. [70] RENAULT-CRISPO J-S, LANG F, SERVIO P. The importance of liquid phase compositions in gas hydrate modeling:carbon dioxide-methane-water case study[J]. The Journal of Chemical Thermodynamics, 2014, 68(s):153-160. [71] BRUUSGAARD H, SERVIO P. Prediction of methane and carbon dioxide solubilities for the CH4+CO2+H2O system under hydrate-liquid-vapor equilibrium[J]. Fluid Phase Equilibria, 2011, 305(2):97-100. [72] DHARMAWANDHANA P B. The measurement of the thermodynamic parameters of the hydrate structure and application of them in the prediction of natural gas hydrates[D]. Golden:Colorado School of Mines, 1980. [73] HANDA Y P, TSE J S. Thermodynamic properties of empty lattices of structure Ⅰ and structure Ⅱ clathrate hydrates[J]. The Journal of Physical Chemistry, 1986, 90(22):5917-5921. [74] MORADI G, KHOSRAVANI E. Modeling of hydrate formation conditions for CH4, C2H6, C3H8, N2, CO2 and their mixtures using the PRSV2 equation of state and obtaining the Kihara potential parameters for these components[J]. Fluid Phase Equilibria, 2013, 338(Supplement C):179-187. [75] BALLARD A L, JR E D S. Structural transitions in methane+ethane gas hydrates——Part Ⅱ:modeling beyond incipient conditions[J]. Chemical Engineering Science, 2000, 55(23):5773-5782. [76] HEJRATI LAHIJANI M A, XIAO C. SAFT modeling of multiphase equilibria of methane-CO2-water-hydrate[J]. Fuel, 2017, 188(s):636-644. [77] SEO Y-T, KANG S-P, LEE H et al. Hydrate phase equilibria for gas mixtures containing carbon dioxide:a proof-of-concept to carbon dioxide recovery from multicomponent gas stream[J]. Korean Journal of Chemical Engineering, 2000, 17(6):659-667. [78] PARICAUD P. Modeling the dissociation conditions of salt hydrates and gas semiclathrate hydrates:application to lithium bromide, hydrogen iodide, and tetra-n-butylammonium bromide + carbon dioxide systems[J]. The Journal of Physical Chemistry B, 2011, 115(2):288-299. [79] GARCIA M, MARRIOTT R, CLARKE M A. Modeling of the thermodynamic equilibrium conditions for the formation of TBAB and TBAC semiclathrates formed in the presence of Xe, Ar, CH4, CO2, N2, and H2[J]. Industrial & Engineering Chemistry Research, 2016, 55(3):777-787. [80] VERRETT J, RENAULT-CRISPO J-S, SERVIO P. Phase equilibria, solubility and modeling study of CO2/CH4+tetra-n-butylammonium bromide aqueous semi-clathrate systems[J]. Fluid Phase Equilibria, 2015, 388(s):160-168. [81] ESLAMIMANESH A, MOHAMMADI A H, RICHON D. Thermodynamic modeling of phase equilibria of semi-clathrate hydrates of CO2, CH4, or N2+tetra-n-butylammonium bromide aqueous solution[J]. Chemical Engineering Science, 2012, 81(s):319-328. [82] SEIF M, KAMRAN-PIRZAMAN A, MOHAMMADI A H. Phase equilibria of clathrate hydrates in CO2/CH4+(1-propanol/2-propanol)+ water systems:experimental measurements and thermodynamic modeling[J]. The Journal of Chemical Thermodynamics, 2018, 118(s):58-66. [83] KWATERSKI M, HERRI J-M. Thermodynamic modelling of gas semi-clathrate hydrates using the electrolyte NRTL model[C]//7th International Conference on Gas Hydrates(ICGH 2011), Edimbourg, United Kingdom, 2011:437. [84] JGJDR J. The mechanism and the rate of hydrate formation[J]. Journal Proc. Int. Fresh Water Sea, 1970, 3:3. [85] ENGLEZOS P, KALOGERAKIS N, DHOLABHAI P D, et al. Kinetics of formation of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1987, 42(11):2647-2658. [86] ENGLEZOS P, KALOGERAKIS N, DHOLABHAI P D, et al. Kinetics of gas hydrate formation from mixtures of methane and ethane[J]. Chemical Engineering Science, 1987, 42(11):2659-2666. [87] SKOVBORG P, RASMUSSEN P. A mass transport limited model for the growth of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1994, 49(8):1131-1143. [88] ADEYEMO A, KUMAR R, LINGA P, et al. Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column[J]. International Journal of Greenhouse Gas Control, 2010, 4(3):478-485. [89] 李淇. 水合物法分离沼气中二氧化碳研究[D]. 广州:华南理工大学, 2017. LI Qi. Study on carbon dioxide separation from biogas base on clathrate hydrate technology[D]. Guangzhou:South China University of Technology, 2017. [90] SUN C-Y, MA C-F, CHEN G-J, et al. Experimental and simulation of single equilibrium stage separation of(methane + hydrogen) mixtures via forming hydrate[J]. Fluid Phase Equilibria, 2007, 261(1/2):85-91. [91] DABROWSKI N, WINDMEIER C, OELLRICH L R. Purification of natural gases with high CO2 content using gas hydrates[J]. Energy & Fuels, 2009, 23:5603-5610. [92] MAHABADIAN M A, CHAPOY A, BURGASS R,et al. Development of a multiphase flash in presence of hydrates:experimental measurements and validation with the CPA equation of state[J]. Fluid Phase Equilibria, 2016, 414:117-132. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[7] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[8] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[9] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[10] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[11] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[12] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[13] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[14] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[15] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |