化工进展 ›› 2018, Vol. 37 ›› Issue (12): 4586-4595.DOI: 10.16085/j.issn.1000-6613.2018-0473
闫霆, 王文欢, 王程遥
收稿日期:
2018-03-08
修回日期:
2018-05-18
出版日期:
2018-12-05
发布日期:
2018-12-05
通讯作者:
闫霆(1981-),男,博士研究生,研究方向为热能储存。
作者简介:
闫霆(1981-),男,博士研究生,研究方向为热能储存。E-mail:yt81725@126.com。
基金资助:
YAN Ting, WANG Wenhuan, WANG Chengyao
Received:
2018-03-08
Revised:
2018-05-18
Online:
2018-12-05
Published:
2018-12-05
摘要: 化学储热技术通过可逆的化学反应来存储和释放热能,其储热密度远高于显热储存和相变热储存,不仅可以对热能进行长期储存几乎无热损失,而且可以实现冷热的复合储存,因而在余热/废热回收及太阳能的利用等方面都具有广阔的应用前景。本文将化学储热分为浓度差热储存、化学吸附热储存和化学反应热储存3类,并针对上述分类的特点及其应用,对化学储热技术进行了系统的归纳。其中主要概括了目前广为关注、有前景的储热材料,总结了化学储热技术当前的研究现状以及最新进展,并且回顾了将化学储热技术应用于储热研究的试验系统。同时,基于研究现状的分析,指出了此项技术需要进一步研究和解决的相关问题,以期为化学储热技术的发展和走向实际应用提供有价值的借鉴和参考。
中图分类号:
闫霆, 王文欢, 王程遥. 化学储热技术的研究现状及进展[J]. 化工进展, 2018, 37(12): 4586-4595.
YAN Ting, WANG Wenhuan, WANG Chengyao. Research situation and progress on chemical heat storage technology[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4586-4595.
[1] YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43:13-31. [2] TANAKA T, SAKUTA K, KAMIMOTO M, et al. Solar thermal energy storage using heat of dilution:analysis of heat generation in multistage mixing column[J]. Energy Conversion, 1978, 18(2):57-65. [3] WYMAN C, CASTLE J, KREITH F. A review of collector and energy storage technology for intermediate temperature applications[J]. Solar Energy, 1980, 24(6):517-540. [4] MEZZINA A. The US chemical heat pump program——an overview[J]. International Journal of Ambient Energy, 1982, 3(3):137-140. [5] GRÄNFORS A, NILSSON B, JERNQVIST Å, et al. Dynamic simulation of an absorption heat transformer incorporated with an evaporation plant[J]. Computers & Chemical Engineering, 1997, 21:S715-S720. [6] STEPHAN K, SCHMITT M, HEBECKER D, et al. Dynamics of a heat transformer working with the mixture NaOH-H2O[J]. International Journal of Refrigeration, 1997, 20(7):483-495. [7] WEBER R, DORER V. Long-term heat storage with NaOH[J]. Vacuum, 2008, 82(7):708-716. [8] FUMEY B, WEBER R, GANTENBEIN P, et al. Experience on the development of a thermo-chemical storage system based on aqueous sodium hydroxide[J]. Energy Procedia, 2014, 57:2370-2379. [9] FUMEY B, WEBER R, GANTENBEIN P, et al. Operation results of a closed sorption heat storage prototype[J]. Energy Procedia, 2015, 73:324-330. [10] 杨启超, 张晓灵, 王馨, 等. 吸收式化学蓄能的研究综述[J]. 科学通报, 2011, 56(9):669-678. YANG Q C, ZHANG X L, WANG X, et al. Review on absorption thermal energy storage technologies[J]. Chinese Science Bulletin (Chinese Version), 2011, 56(9):669-678. [11] PARHAM K, KHAMOOSHI M, TEMATIO DBK, et al. Absorption heat transformers:a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2014, 34:430-452. [12] RIVERA W, BEST R, CARDOSO MJ, et al. A review of absorption heat transformers[J]. Applied Thermal Engineering, 2015, 91:654-670. [13] N'TSOUKPOE K E, LE PIERRÈS N, LUO L. Experimentation of a LiBr-H2O absorption process for long-term solar thermal storage:prototype design and first results[J]. Energy, 2013, 53:179-198. [14] N'TSOUKPOE K E, PERIER-MUZET M, LE PIERRÈS N, et al. Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallisation of the solution[J]. Solar Energy, 2014, 104:2-15. [15] PERIER-MUZET M, LE PIERRES N. Modeling and analysis of energetic and exergetic efficiencies of a LiBr/H2O absorption heat storage system for solar space heating in buildings[J]. Energy Efficiency, 2016, 9(2):281-299. [16] N'TSOUKPOE KE, LE PIERRÈS N, LUO L. Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system[J]. Energy, 2012, 37(1):346-358. [17] HOU Y, VIDU R, STROEVE P. Solar energy storage methods[J]. Industrial & Engineering Chemistry Research, 2011, 50(15):8954-8964. [18] VAN ESSEN V M, BAKKER M, SCHUITEMA R, et al. Materials for thermochemical storage:characterization of magnesium sulfate[C]//EUROSUN:1st International Conference on Solar Heating, Cooling and Buildings. Lisbon, Portugal:Energy Research Centre of the Netherlands, 2009. [19] HONGOIS S, KUZNIK F, STEVENS P, et al. Development and characterisation of a new MgSO4 zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7):1831-1837. [20] LI T X, XU J X, YAN T, et al. Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage[J]. Energy, 2016, 107:347-359. [21] 闫霆, 李卉, 马良, 等. 基于热化学再吸附变温原理的低品位热能升温储能特性[J]. 上海交通大学学报, 2013(11):1717-1722. YAN T, LI H, MA L, et al. Integrated energy storage and energy upgrade of low-grade thermal energy based on thermochemical resorption heat transformer[J]. Journal of Shanghai Jiao Tong University, 2013(11):1717-1722. [22] LI T X, WANG R Z, YAN T. Solid-gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer[J]. Energy, 2015, 84:745-758. [23] HATAMACHI T, KODAMA T, ISOBE Y. Carbonate composite catalyst with high-temperature thermal storage for use in solar tubular reformers[J]. Journal of Solar Energy Engineering, 2004, 127(3):396-400. [24] CHANG J-S, PARK S-E, CHON H. Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts[J]. Applied Catalysis A:General, 1996, 145(1):111-124. [25] GOKON N, INUTA S-I, YAMASHITA S, et al. Double-walled reformer tubes using high-temperature thermal storage of molten-salt/MgO composite for solar cavity-type reformer[J]. International Journal of Hydrogen Energy, 2009, 34(17):7143-7154. [26] BERMAN A, KARN RK, EPSTEIN M. A new catalyst system for high-temperature solar reforming of methane[J]. Energy & Fuels, 2006, 20(2):455-462. [27] KODAMA T, ISOBE Y, KONDOH Y, et al. Ni/ceramic/molten-salt composite catalyst with high-temperature thermal storage for use in solar reforming processes[J]. Energy, 2004, 29(5/6):895-903. [28] ANIKEEV V I, BOBRIN A S, ORTNER J, et al. Catalytic thermochemical reactor/receiver for solar reforming of natural gas:design and performance[J]. Solar Energy, 1998, 63(2):97-104. [29] GOKON N, OSAWA Y, NAKAZAWA D, et al. Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors[J]. International Journal of Hydrogen Energy, 2009, 34(4):1787-1800. [30] GOKON N, YAMAWAKI Y, NAKAZAWA D, et al. Ni/MgO-Al2O3 and Ni-Mg-O catalyzed SiC foam absorbers for high temperature solar reforming of methane[J]. International Journal of Hydrogen Energy, 2010, 35(14):7441-7453. [31] GOKON N, YAMAWAKI Y, NAKAZAWA D, et al. Kinetics of methane reforming over Ru/γ-Al2O3-catalyzed metallic foam at 650-900℃ for solar receiver-absorbers[J]. International Journal of Hydrogen Energy, 2011, 36(1):203-215. [32] XU Z, ZHEN M, BI Y, ZHEN K. Catalytic properties of Ni modified hexaaluminates LaNiyAl12-yO19-δ for CO2 reforming of methane to synthesis gas[J]. Applied Catalysis A:General, 2000, 198(1/2):267-273. [33] EDWARDS J H, DO K T, MAITRA A M, et al. The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat[J]. Energy Conversion and Management, 1996, 37(6):1339-1344. [34] KODAMA T, KIYAMA A, SHIMIZU K I. Catalytically activated metal foam absorber for light-to-chemical energy conversion via solar reforming of Methane[J]. Energy & Fuels, 2003, 17(1):13-17. [35] KODAMA T, KOYANAGI T, SHIMIZU T, et al. CO2 reforming of methane in a molten carbonate salt bath for use in solar thermochemical processes[J]. Energy & Fuels, 2001, 15(1):60-65. [36] WÖRNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catalysis Today, 1998, 46(2/3):165-174. [37] CARDEN P O. Energy corradiation using the reversible ammonia reaction[J]. Solar Energy, 1977, 19(4):365-378. [38] WILLIAMS O M. Design and cost analysis for an ammonia-based solar thermochemical cavity absorber[J]. Solar Energy, 1980, 24(3):255-263. [39] WILLIAMS O M. Ammonia thermochemical energy transport in a distributed collector solar thermal power plant[J]. Solar Energy, 1981, 27(3):205-214. [40] LOVEGROVE K, LUZZI A. Endothermic reactors for an ammonia based thermochemical solar energy storage and transport system[J]. Solar Energy, 1996, 56(4):361-371. [41] LOVEGROVE K. High pressure ammonia dissociation experiments for solar energy transport and storage[J]. International Journal of Energy Research, 1996, 20(11):965-978. [42] LUZZI A, LOVEGROVE K. A solar thermochemical power plant using ammonia as an attractive option for greenhouse-gas abatement[J]. Energy, 1997, 22(2):317-325. [43] KREETZ H, LOVEGROVE K. Theoretical analysis and experimental results of a 1 kWchem ammonia synthesis reactor for a solar thermochemical energy storage system[J]. Solar Energy, 1999, 67(4/5/6):287-296. [44] LOVEGROVE K, LUZZI A, KREETZ H. A solar-driven ammonia-based thermochemical energy storage system[J]. Solar Energy, 1999, 67(4/5/6):309-316. [45] LUZZI A, LOVEGROVE K, FILIPPI E, et al. Techno-economic analysis of a 10 MWe solar thermal power plant using ammonia-based thermochemical energy storage[J]. Solar Energy, 1999, 66(2):91-101. [46] LOVEGROVE K, LUZZI A, MCCANN M, et al. Exergy analysis of ammonia-based solar thermochemical power systems[J]. Solar Energy, 1999, 66(2):103-115. [47] KREETZ H, LOVEGROVE K, LUZZI A. Maximizing thermal power output of an ammonia synthesis reactor for a solar thermochemical energy storage system[J]. Journal of Solar Energy Engineering, 2000, 123(2):75-82. [48] KREETZ H, LOVEGROVE K. Exergy analysis of an ammonia synthesis reactor in a solar thermochemical power system[J]. Solar Energy, 2002, 73(3):187-194. [49] LOVEGROVE K, LUZZI A, SOLDIANI I, et al. Developing ammonia based thermochemical energy storage for dish power plants[J]. Solar Energy, 2004, 76(1/2/3):331-337. [50] DUNN R, LOVEGROVE K, BURGESS G. A review of ammonia-based thermochemical energy storage for concentrating solar power[J]. Proceedings of the IEEE, 2012, 100(2):391-400. [51] KITIKIATSOPHON W, PIUMSOMBOON P. Dynamic simulation and control of an isopropanol-acetone-hydrogen chemical heat pump[J]. Science Asia, 2004, 30:135-147. [52] KLINSODA I, PIUMSOMBOON P. Isopropanol-acetone-hydrogen chemical heat pump:a demonstration unit[J]. Energy Conversion and Management, 2007, 48(4):1200-1207. [53] GUO J, HUAI X, LI X, et al. Performance analysis of isopropanol-acetone-hydrogen chemical heat pump[J]. Applied Energy, 2012, 93:261-267. [54] GUO J, HUAI X, XU M. Study on isopropanol-acetone-hydrogen chemical heat pump of storage type[J]. Solar Energy, 2014, 110:684-690. [55] XU M, XIN F, LI X, et al. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for isopropanol-acetone-hydrogen chemical heat pump[J]. Ultrasonics Sonochemistry, 2015, 23:66-74. [56] FELDERHOFF M, BOGDANOVIC B. High temperature metal hydrides as heat storage materials for solar and related applications[J]. International Journal of Molecular Sciences, 2009, 10(1):325-344. [57] BOGDANOVIC B, RITTER A, SPLIETHOFF B, et al. A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system[J]. International Journal of Hydrogen Energy, 1995, 20(10):811-822. [58] FANG Z Z, ZHOU C, FAN P, et al. Metal hydrides based high energy density thermal battery[J]. Journal of Alloys and Compounds, 2015, 645(s1):S184-S189. [59] BOGDANOVIC B, REISER A, SCHLICHTE K, et al. Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermochemical thermal energy storage[J]. Journal of Alloys and Compounds, 2002, 345(1/2):77-89. [60] KYAW K, MATSUDA H, HASATANI M. Applicability of carbonation/decarbonation reactions to high-temperature thermal energy storage and temperature upgrading[J]. Journal of Chemical Engineering of Japan, 1996, 29(1):119-125. [61] KYAW K, SHIBATA T, WATANABE F, et al. Applicability of zeolite for CO2 storage in a CaO-CO2 high temperature energy storage system[J]. Energy Conversion and Management, 1997, 38(10):1025-1033. [62] KATO Y, WATANABE Y, YOSHIZAWA Y. Application of inorganic oxide/carbon dioxide reaction system to a chemical heat pump[C]//IECEC 96:Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington, United States, 1996:763-768. DOI:10.1109/IECEC.1996.553793. [63] KATO Y, YAMADA M, KANIE T, et al. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors[J]. Nuclear Engineering and Design, 2001, 210(1/2/3):1-8. [64] FORSTER M. Theoretical investigation of the system SnOx/Sn for the thermochemical storage of solar energy[J]. Energy, 2004, 29(5/6):789-799. [65] CARRILLO A J, SASTRE D, SERRANO D P, et al. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage[J]. Physical Chemistry Chemical Physics, 2016, 18(11):8039-8048. [66] ABU-HAMED T, KARNI J, EPSTEIN M. The use of boron for thermochemical storage and distribution of solar energy[J]. Solar Energy, 2007, 81(1):93-101. [67] BLOCK T, KNOBLAUCH N, SCHMÜCKER M. The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material[J]. Thermochimica Acta, 2014, 577:25-32. [68] CARRILLO A J, SERRANO D P, PIZARRO P, et al. Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple:influence of the initial particle size on the morphological evolution and cyclability[J]. Journal of Materials Chemistry A, 2014, 2(45):19435-19443. [69] CARRILLO A J, SERRANO D P, PIZARRO P, et al. Improving the thermochemical energy storage performance of the Mn2O3/Mn3O4 redox couple by the incorporation of iron[J]. ChemSusChem, 2015, 8(11):1947-1954. [70] FRITSCH S, NAVROTSKY A. Thermodynamic properties of manganese oxides[J]. Journal of the American Ceramic Society, 1996, 79(7):1761-1768. [71] FUJIMOTO S, BILGEN E, OGURA H. Dynamic simulation of CaO/Ca(OH)2 chemical heat pump systems[J]. Exergy(An International Journal), 2002, 2(1):6-14. [72] PARDO P, ANXIONNAZ-MINVIELLE Z, ROUGÉ S, et al. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage[J]. Solar Energy, 2014, 107:605-616. [73] MASTRONARDO E, BONACCORSI L, KATO Y, et al. Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps[J]. Applied Energy, 2016, 162:31-39. [74] ZAMENGO M, RYU J, KATO Y. Magnesium hydroxide-expanded graphite composite pellets for a packed bed reactor chemical heat pump[J]. Applied Thermal Engineering, 2013, 61(2):853-858. [75] KIM S T, RYU J, KATO Y. Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump[J]. Progress in Nuclear Energy, 2011, 53(7):1027-1033. [76] KIM S T, RYU J, KATO Y. The optimization of mixing ratio of expanded graphite mixed chemical heat storage material for magnesium oxide/water chemical heat pump[J]. Applied Thermal Engineering, 2014, 66(1/2):274-281. [77] MYAGMARJAV O, RYU J, KATO Y. Lithium bromide-mediated reaction performance enhancement of a chemical heat-storage material for magnesium oxide/water chemical heat pumps[J]. Applied Thermal Engineering, 2014, 63(1):170-176. [78] SHKATULOV A, RYU J, KATO Y, et al. Composite material "Mg(OH)2/vermiculite":a promising new candidate for storage of middle temperature heat[J]. Energy, 2012, 44(1):1028-1034. [79] KATO Y, TAKAHASHI R, SEKIGUCHI T, et al. Study on medium-temperature chemical heat storage using mixed hydroxides[J]. International Journal of Refrigeration, 2009, 32(4):661-666. |
[1] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[10] | 吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122. |
[11] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[12] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[13] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[14] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[15] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |