[1] VIALAT P, LEROUX F, MOUSTY C. Electrochemical properties of layered double hydroxides containing 3D metal cations[J]. Journal of Solid State Electrochemistry, 2015, 19(7):1975-1983.
[2] LI L, LI R, GAI S, et al. MnO2 nanosheets grown on nitrogen-doped hollow carbon shells as a high-performance electrode for asymmetric supercapacitors[J]. Chemistry, 2015, 21(19):7119-7126.
[3] 杨硕, 徐桂银, 韩金鹏, 等. 多巴胺改性聚吡咯衍生掺氮多孔碳材料的制备及其超电容性能[J]. 物理化学学报, 2015, 31(4):685-692. YANG Shuo, XU Guiyin, HAN Jinpeng, et al. Nitrogen-doped porous carbon derived from dopamine-modified polypyrrole and its electrochemical capacitive behavior[J]. Acta Physica-Chimica Sinica, 2015, 31(4):685-692.
[4] TANG J, SALUNKHE R R, LIU J, et al. Thermal conversion of core-shell metal-organic frameworks:a new method for selectively functionalized nanoporous hybrid carbon[J]. Journal of the American Chemical Society, 2015, 137(4):1572-1580.
[5] KICSINY R, FARKAS I. Improved differential control for solar heating systems[J]. Solar Energy, 2012, 86(11):3489-3498.
[6] SUN Y, WU Q, SHI G. Graphene based new energy materials[J]. Energy & Environmental Science, 2011, 4(4):1113-1132.
[7] 冯艳艳, 黄宏斌, 张心桔, 等. 高性能镍钴层状双金属氢氧化物的制备及其电化学性能研究[J]. 物理学报, 2017, 66(24):248202. FENG Yanyan, HUANG Hongbin, ZHANG Xinju, et al. Synthesis and electrochemical properties of Ni-Co layered double hydroxides with high performance[J]. Acta Physica Sinica, 2017, 66(24):248202.
[8] 冯辉霞, 王滨, 谭琳, 等. 导电聚合物基超级电容器电极材料研究进展[J]. 化工进展, 2014, 33(3):689-695. FENG Huixia, WANG Bin, TAN Lin, et al. Progress in the research on conductive polymer-based electrode materials for supercapacitors[J]. Chemical Industry and Engineering Progress, 2014, 33(3):689-695.
[9] HAN J, XU G, DING B, et al. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(15):5352-5357.
[10] WANG L, HAN Y, FENG X, et al. Metal-organic frameworks for energy storage:batteries and supercapacitors[J]. Coordination Chemistry Reviews, 2015, 307:361-381.
[11] ZHAO C, WANG X, WANG S, et al. Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors[J]. International Journal of Hydrogen Energy, 2012, 37(16):11846-11852.
[12] 卢亚俊, 王浩然, 顾煜, 等. 水热合成α-Ni(OH)2纳米线的形成机理研究[J]. 化学学报, 2012, 70(16):1731-1736. LU Yajun, WANG Haoran, GU Yu, et al. Studies on the growth mechanism of hydrothermal synthesis of α-Ni(OH)2 nanowires[J]. Acta Chimica Sinica, 2012, 70(16):1731-1736.
[13] TANG W, YANG X, LIU Z, et al. Preparation of β-MnO2 nanocrystal/acetylene black composites for lithium batteries[J]. Journal of Materials Chemistry, 2003, 13(12):2989-2995.
[14] 严琳, 孔惠, 李在均. 3D石墨烯/镍铝层状双金属氢氧化物的制备及超级电容性能[J]. 化学学报, 2013, 71(5):822-828. YAN Lin, KONG Hui, LI Zaijun. Synthesis and supercapacitor property of three-dimensional graphene/Ni-Al layered double hydroxide composite[J]. Acta Chimica Sinica, 2013, 71(5):822-828.
[15] MA S B, LEE Y H, AHN K Y, et al. Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution[J]. Journal of the Electrochemical Society, 2006, 153(1):C27-C32.
[16] 孙丽萍, 李强, 赵辉, 等. La1.6Sr0.4NiO4-Ag中空纳米纤维的制备与电化学性质研究[J]. 无机化学学报, 2014, 30(5):1045-1050. SUN Liping, LI Qiang, ZHAO Hui, et al. Preparation and electrochemical properties of La1.6Sr0.4NiO4-Ag hollow nanofibers[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(5):1045-1050.
[17] BOKHONOV B, KORCHAGIN M. The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel[J]. Journal of Alloys and Compounds, 2002, 333(1):308-320.
[18] YANG W, FENG Y Y, WANG N, et al. Facile microwave-assisted synthesis of sheet-like cobalt hydroxide for energy-storage application:effect of the cobalt precursors[J]. Journal of Alloys and Compounds, 2015, 644:836-845.
[19] 许娟, 周益明, 唐亚文, 等. 固相反应法合成掺铝的α型氢氧化镍及其电化学性能[J]. 无机化学学报, 2003, 19(5):535-538. XU Juan, ZHOU Yiming, TANG Yawen, et al. Solid state synthesis and electrochemical performances of α-Ni(OH)2 including 20%Al[J]. Chinese Journal of Inorganic Chemistry, 2003, 19(5):535-538.
[20] JUNG S M, MAFRA D L, LIN C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance[J]. Nanoscale, 2015, 7(10):4386-4393.
[21] DUNAL D P, FULARI V J, LOKHANDE C D. Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films[J]. Microporous and Mesoporous Materials, 2012, 151:511-516.
[22] LI J, XIONG S, LIU Y, et al. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(3):981-988.
[23] YOUNG C, SALUNKHE R R, ALSHEHRIS M, et al. High energy density supercapacitors composed of nickel cobalt oxide nanosheets on nanoporous carbon nanoarchitectures[J]. Journal of Materials Chemistry A, 2017, 5(23):11834-11839.
[24] BAO L, ZANG J, LI X. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high- performance supercapacitor electrodes[J]. Nano Letters, 2011, 11(3):1215-1220. |