[1] 莫尊理, 胡惹惹, 王雅雯, 等. 抗菌材料及其抗菌机理[J]. 材料导报A:综述篇, 2014, 1(28):50-52. MO Zunli, HU Rere, WANG Yawen, et al. Review of antibacterial materials and their mechanisms[J]. Material Review A, 2014, 1(28):50-52.
[2] GAO Likun, GAN Wentao, XIAO Shaoliang, et al. A robust superhydrophobic antibacterial Ag-TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination A robust superhydrophobic antibacterial Ag-TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination[J]. Ceramics International, 2016, 42:2170-2179.
[3] 张凤君, 刘卓婧, 刘兆煐, 等. TiO2光催化剂改性研究进展[J]. 科技导报, 2013, 31(17):66-71. ZHANG Fengjun, LIU Zhuojing, LIU Zhaohuan, et al. Review on the modification of TiO2 photocatalyst[J]. Science and Technology Review, 2013, 31(17):66-71.
[4] CHATTERJEE Debabrata, MAHATA Anima. Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system[J]. Catalysis Communications, 2001, 2(1):1-3.
[5] CHOI W, TERMIN A, HOFFMANN R M. The role of metal ion dopants in quantum -sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics[J]. Journal of Chemical Physics, 1994, 98(51):13669-13679.
[6] CHENG Ping, LI Wei, ZHOU Tianle, et al. Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 168(1/2):97-101.
[7] SIRELKHATIM Amna, SHAHROM Mahmud, AZMAN Seeni. Review on zinc oxide nanoparticles:antibacterial activity and toxicity mechanism[J]. Nano-Micro Lett., 2015, 7(3):219-242.
[8] XIE Y P, HE Y P, PETER L I, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni[J]. Applied and Enviornmental Microbiology, 2011, 77(7):2325-2331.
[9] ZHANG Lingling, LI Yu, LIU Xiaoming, et al. The properties of ZnO nanofluids and the role of H2O2 in the disinfection activity against Escherichia coli[J]. Water Research, 2013, 47:4013-4021.
[10] ŠTRBAC D, AGGELOPOULOS C A, ŠTRBAC G, et al. Photocatalytic degradation of naproxen and methylene blue:comparison between ZnO, TiO2 and their mixture[J]. Process Safety and Environment Protection, 2018, 113:174-183.
[11] 贾振斌, 陈伙德, 邱敏. 纳米ZnO-TiO2复合粉体的制备及抗菌性能的研究[J]. 广东化工, 2012, 9(39):83-84. JIA Zhenbin, CHEN Huode, QIU Min. Study on preparation and antibacterial activity of nano-ZnO/TiO2 composite powders[J]. Guangdong Chemical Industry, 2012, 9(39):83-84.
[12] 胡亚微, 贺惠蓉, 马养民, 等. TiO2/ZnO粒子的制备及其抗菌性能[J]. 化工新型材料, 2014, 42(7):77-79. HU Yawei, HE Huirong, MA Yangmin, et al. Fabrication and antibacterial activity of TiO2/ZnO paticles[J]. New Chemical Materials, 2014, 42(7):77-79.
[13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.纳米无机材料抗菌性能检测方法:GB/T 21510-2008[S].北京:中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Antimicrobial property detection methods for nano-inorganic materials:GB/T 21510-2008[S]. Beijing:Standards Press of China, 2008.
[14] QI Kezhen, CHENG Bei, YU Jiaguo, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds, 2017, 727:792-820.
[15] SOURABH Dwivedi, RIZWAN Wahab, FARHEEN Khan, et al. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination[J]. PLOS ONE, 2014, 9(11):111-289.
[16] JONES Nicole, RAY Binata, RANJIT Koodali T, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms[J]. FEMS Microbiol. Lett., 2008, 279(1):71-76.
[17] HIROTA Ken, SUGIMOTO Maiko, KATO Masaki, et al. Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions[J]. Ceram. Int., 2010, 36(2):497-506.
[18] HEINAAN Margit, IVASK Angela, BLINOVA Irina, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus[J]. Chemosphere, 2008, 71(7):1308-1316.
[19] XIA Tian, MICHAEL Kovochich, MONTY Liong. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties[J]. ACS Nano., 2008, 2(10):2121-2134.
[20] KAJA K, ANGELA I, HENRI-CHARLES D, et al. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae[J]. Toxicology in Vitro, 2009, 23:1116-1122.
[21] YANG Hui, LIU Chao, YANG Danfeng, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by fourtypical nanomaterials:the role of particle size, shape and composition[J]. J. Appl. Toxicol., 2009, 29:69-78.
[22] WAGHMARE M A, PAWAR K S, PATHAN H M. Influence of annealing temperature on the structural and optical properties of nanocrystalline zirconium oxide[J]. Materials Science in Semiconductor Processing, 2017, 72:122-127.
[23] PINJARI D V, PRASAD K, GOGATE C, et al. Synthesis of titanium dioxide by ultrasound assisted sol-gel technique:effect of calcination and sonication time[J]. Ultrasonics Sonochemistry, 2015, 23:185-191.
[24] ASHRAF Robina, RIAZ Saira, KAYANI Z N, et al. Effect of calcination on properties of ZnO nanoparticles[J]. Materials Today:Proceedings, 2015, 2:5468-5472. |