[1] National Renewable Energy Laboratory. Research cell record efficiency chart and explanatory notes[EB/OL].[2017-04-17]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[2] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21):477-485.
[3] SAPAROV B, MITZI D B. Organic-inorganic perovskites:structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7):4558-4596.
[4] GREEN M A, BAILIE-HO A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8:506-514.
[5] 肖立新,邹德春,王树峰,等. 钙钛矿太阳能电池[M]. 北京:北京大学出版社, 2016:22-48. XIAO L X, ZOU D C, WANG S F, et al. Perovskite solar cells[M]. Beijing:Peking University Press, 2016:22-48.
[6] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237.
[7] LEE J W, SEOL D J, CHO A N, et al. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3[J]. Advanced Materials, 2014, 26(29):4991-4998.
[8] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7:982-988.
[9] SWARNKAR A,MARSHALL A R,SANEHIRA E M,et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308):92-95.
[10] YI C Y, LUO J S, MELONI S, et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(2):656-662.
[11] JACOBSSON T J, CORREA-BAENA J P, PAZOKI M, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells[J]. Energy & Environmental Science, 2016, 9(5):1706-1724.
[12] SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells:Improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 2016, 9(6):1989-1997.
[13] BI D Q, YI C Y, LUO J S, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1:16142.
[14] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309):206-209.
[15] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051.
[16] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(8):591.
[17] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647.
[18] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398.
[19] ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546.
[20] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535):476-480.
[21] BI D Q, MOON S J, HAGGMAN L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. RSC Advances, 2013, 3(41):18762-18766.
[22] QIN P, TANAKA S, ITO S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nature Communications, 2014, 5:3834.
[23] LIU J, WU Y, QIN C, et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(9):2963-2967.
[24] GHARIBZADEH S, NEJAND B A, MOSHAⅡ A, et al. Two-step physical deposition of a compact CuI hole-transport layer and the formation of an interfacial species in perovskite solar cells[J]. Chem SusChem, 2016, 9(15):1929-1937.
[25] ZHANG H, WANG H, CHEN W, et al. CuGaO2:A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells[J]. Advanced Materials, 2017, 29(18):1604984.
[26] ZHAO J J, ZHENG X P, DENG Y H, et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?[J]. Energy & Environmental Science, 2016, 9(12):3650-3656.
[27] WAKAMIYA A, ENDO M, SASAMORI T, et al. Reproducible fabrication of efficient perovskite-based solar cells:X-ray crystallographic studies on the formation of CH3NH3PbI3 layers[J]. Chemistry Letters, 2014, 43(5):711-714.
[28] RONG Y G, TANG Z J, ZHAO Y F, et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells[J]. Nanoscale, 2015, 7(24):10595-10599.
[29] KIM H B, CHOI H, JEONG J, et al. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells[J]. Nanoscale, 2014, 6(12):6679-6683.
[30] WU Y Z, YANG X D, CHEN W, et al. Perovskite solar cells with 18.21% effciency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy, 2016, 7:16148.
[31] SHEN D H, YU X, CAI X, et al. Understanding the solvent-assisted crystallization mechanism in herent in efficient organic-inorganic halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(48):20454-20461.
[32] CHEN J Z, XIONG Y L, RONG Y G, et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells[J]. Nano Energy, 2016, 27:130-137.
[33] TSAI C M, WU G W, NARRA S, et al. Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%[J]. Journal of Materials Chemistry A, 2017, 5(2):739-747.
[34] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead (Ⅱ) iodide[J]. Journal of the American Chemical Society, 2015, 137(27):8696-8699.
[35] WILLIAMS S T, ZUO F, CHUEH C C, et al. Role of chloride in the morphological evolution of organo-lead halide perovskite thin films[J]. ACS Nano, 2014, 8(10):10640-10654.
[36] WANG D, LIU Z H, ZHOU Z M, et al. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixed-lead-halide precursors[J]. Chemistry of Materials, 2014, 26(24):7145-7150.
[37] ZHANG W, SALIBA M, MOORE D T, et al. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells[J]. Nature Communications, 2015, 6:6142.
[38] SINGH T, MIYASAKA T. High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions[J]. Chemical Communications, 2016, 52(26):4784-4787.
[39] HUANG C, FU N Q, LIU F Y, et al. Highly efficient perovskite solar cells with precursor composition-dependent morphology[J]. Solar Energy Materials and Solar Cells, 2016, 145:231-237.
[40] ZHAO Y X, ZHU K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:Structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(18):9412-9418.
[41] ZHAO Y X, KAI Z. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition[J]. Journal of the American Chemical Society, 2014, 136(35):12241-12244.
[42] ZUO C T, DING L M. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive[J]. Nanoscale, 2014, 6(17):9935-9938.
[43] WANG Z W, ZHOU Y Y, PANG S P, et al. Additive-modulated evolution of CH(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells[J]. Chemistry of Materials, 2015, 27(20):7149-7155.
[44] HEO J H, SONG D H, HAN H J, et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J]. Advanced Materials, 2015, 27(22):3424-3430.
[45] KIM J, YUN J S, WEN X M, et al. Nucleation and growth control of HC(NH2)2PbI3 for planar perovskite solar cell[J]. The Journal of Physical Chemistry C, 2016, 120(20):11262-11267.
[46] ZHANG W, PATHAK S, SAKAI N, et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells[J]. Nature Communications, 2015, 6:10030.
[47] HUANG J, WANG M Q, DING L, et al. Hydrobromic acid assisted crystallization of MAPbI3-xClx for enhanced power conversion efficiency in perovskite solar cells[J]. RSC Advances, 2016, 6(61):55720-55725.
[48] MEI A Y, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science,2014, 345(6194):295-298.
[49] LIANG P W, LIAO C Y, CHUEH C C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced Materials, 2014, 26(22):3748-3754.
[50] LI X, DAR M I, YI C Y, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acidω-ammonium chlorides[J]. Nature Chemistry, 2015, 7(9):703-711.
[51] ZHAO Y C, WEI J, LI H, et al. A polymer scaffold for self-healing perovskite solar cells[J]. Nature Communications, 2016, 7:10228.
[52] YANG S, WANG Y, LIU P, et al. Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nature Energy, 2016, 1:15016.
[53] KE W J, FANG G J, WAN J W, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells[J]. Nature Communications, 2015, 6:6700.
[54] JENG J Y, CHIANG Y F, LEE M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27):3727-3732.
[55] JENG J Y, CHEN K C, CHIANG T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2014, 26(24):4107-4113.
[56] SALIBA M, TAN K W, SAI H, et al. Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic-inorganic lead trihalide perovskites[J]. The Journal of Physical Chemistry C, 2014, 118(30):17171-17177.
[57] BURSCHKA J, PELLET N, MOONS J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319.
[58] LIU T H, HU Q, WU J, et al. Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells[J]. Advanced Energy Materials, 2016, 6(3):1501890.
[59] WU Y Z, ISLAM A, YANG X D, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7(9):2934-2938.
[60] SHI J J, LUO Y H, WEI H Y, et al. Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(12):9711-9718.
[61] BI D Q, El-ZOHRY A M, HAGFELDT A, et al. Improved morphology control using a modified two-step method for efficient perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(21):18751-18757.
[62] DHARANI S, DEWI H A, PRABHAKAR R R, et al. Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells[J]. Nanoscale, 2014, 6(22):13854-13860.
[63] XIAO Z G, BI C, SHAO Y C, et al. Efficient high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy & Environmental Science, 2014, 7(8):2619-2623.
[64] IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nature Nanotechnology, 2014, 9(11):927-932.
[65] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15):9019-9038.
[66] ZHOU Y, YANG M, VASILIEV A L, et al. Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17):9249-9256.
[67] ZHANG T Y, YANG M J, ZHAO Y X, et al. Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion[J]. Nano Letters, 2015, 15(6):3959-3963.
[68] LIU J, SHIRAI Y, YANG X D, et al. High-quality mixedorganic-cation perovskites from a phase-pure non-stoichiometric intermediate (FAI)1-x-PbI2 for solar cells[J]. Advanced Materials, 2015, 27(33):4918-4923.
[69] LI W Z, FAN J D, LI J W, et al. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%[J]. The Journal of the American Chemical Society, 2015, 137(32):10399-10405.
[70] ZHU L F, SHI J J, LV S T, et al. Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells[J]. Nano Energy, 2015, 15:540-548.
[71] LIU W B, LI L, CHEN M, et al. Nucleation mechanism of CH3NH3PbI3 with two-step method for rational design of high performance perovskite solar cells[J]. Journal of Alloys and Compounds, 2017, 697:374-379.
[72] SHI J, WEI H, LV S T, et al. Control of charge transport in the perovskite CH3NH3PbI3 thin film[J]. Chemphyschem:A European Journal of Chemical Physics and Physical Chemistry, 2015, 16(4):842-847.
[73] DONG Q, YUAN Y, SHAO Y, et al. Abnormal crystal growth in CH3NH3PbI3-xClx using a multi-cycle solution coating process[J]. Energy & Environmental Science, 2015, 8(8):2464-2470.
[74] HUANG J S, SHAO Y C, DONG Q F. Organometal trihalide perovskite single crystals:a next wave of materials for 25% efficiency photovoltaics and applications beyond?[J]. Journal of Physical Chemistry Letters, 2015, 6(16):3218-3227.
[75] XIAO Z, DONG Q, BI C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J]. Advanced Materials, 2014, 26(37):6503-6509.
[76] BI C, WANG Q, SHAO Y C, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nature Communications, 2015, 6:7747. |