化工进展 ›› 2018, Vol. 37 ›› Issue (07): 2672-2685.DOI: 10.16085/j.issn.1000-6613.2017-1350
韦慧1,2, 汤洋1, 尤晖2
收稿日期:
2017-07-03
修回日期:
2017-08-01
出版日期:
2018-07-05
发布日期:
2018-07-05
通讯作者:
汤洋,工程师,研究方向为太阳能电池。
作者简介:
韦慧(1987-),女,博士研究生。
基金资助:
WEI Hui1,2, TANG Yang1, YOU Hui2
Received:
2017-07-03
Revised:
2017-08-01
Online:
2018-07-05
Published:
2018-07-05
摘要: 有机-无机杂化钙钛矿(简称钙钛矿)太阳能电池在近年取得了重大突破,实验室小面积器件的光电转换效率从最初2009年的3.8%提升至现今的22.1%。本文从钙钛矿材料的物化性能、钙钛矿太阳能电池的结构、钙钛矿薄膜的制备方法等方面全面分析了钙钛矿太阳能电池的优势和不足。首先简要回顾了钙钛矿太阳能电池问世以来几个重要发展历程和主流电池器件结构的演变,着重讨论了吸光层钙钛矿薄膜的制备方法,包括一步溶液法、分步旋涂-浸渍法、两步旋涂法、气相沉积法,分析了影响钙钛矿成膜的关键因素、微观形貌控制的工艺技术,对溶剂的选择、溶质成分的调控(包括铅源、各类添加剂的选择)以及钙钛矿结晶的粗化做了详细探讨。指出今后的工作重点在于如何精确控制钙钛矿薄膜的化学成分,提高可重复性和良品率;加强器件工作机理、成膜机理的研究;着眼于大面积器件的制备;提高器件的稳定性及开发环境友好型无铅或少铅电池。
中图分类号:
韦慧, 汤洋, 尤晖. 溶液法制备有机-无机杂化钙钛矿薄膜的研究进展[J]. 化工进展, 2018, 37(07): 2672-2685.
WEI Hui, TANG Yang, YOU Hui. Progress of the solution method in organic-inorganic hybrid perovskite fabrication[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2672-2685.
[1] National Renewable Energy Laboratory. Research cell record efficiency chart and explanatory notes[EB/OL].[2017-04-17]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png. [2] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21):477-485. [3] SAPAROV B, MITZI D B. Organic-inorganic perovskites:structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7):4558-4596. [4] GREEN M A, BAILIE-HO A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8:506-514. [5] 肖立新,邹德春,王树峰,等. 钙钛矿太阳能电池[M]. 北京:北京大学出版社, 2016:22-48. XIAO L X, ZOU D C, WANG S F, et al. Perovskite solar cells[M]. Beijing:Peking University Press, 2016:22-48. [6] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237. [7] LEE J W, SEOL D J, CHO A N, et al. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3[J]. Advanced Materials, 2014, 26(29):4991-4998. [8] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7:982-988. [9] SWARNKAR A,MARSHALL A R,SANEHIRA E M,et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308):92-95. [10] YI C Y, LUO J S, MELONI S, et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(2):656-662. [11] JACOBSSON T J, CORREA-BAENA J P, PAZOKI M, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells[J]. Energy & Environmental Science, 2016, 9(5):1706-1724. [12] SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells:Improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 2016, 9(6):1989-1997. [13] BI D Q, YI C Y, LUO J S, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1:16142. [14] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309):206-209. [15] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051. [16] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(8):591. [17] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647. [18] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398. [19] ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546. [20] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535):476-480. [21] BI D Q, MOON S J, HAGGMAN L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. RSC Advances, 2013, 3(41):18762-18766. [22] QIN P, TANAKA S, ITO S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nature Communications, 2014, 5:3834. [23] LIU J, WU Y, QIN C, et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(9):2963-2967. [24] GHARIBZADEH S, NEJAND B A, MOSHAⅡ A, et al. Two-step physical deposition of a compact CuI hole-transport layer and the formation of an interfacial species in perovskite solar cells[J]. Chem SusChem, 2016, 9(15):1929-1937. [25] ZHANG H, WANG H, CHEN W, et al. CuGaO2:A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells[J]. Advanced Materials, 2017, 29(18):1604984. [26] ZHAO J J, ZHENG X P, DENG Y H, et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?[J]. Energy & Environmental Science, 2016, 9(12):3650-3656. [27] WAKAMIYA A, ENDO M, SASAMORI T, et al. Reproducible fabrication of efficient perovskite-based solar cells:X-ray crystallographic studies on the formation of CH3NH3PbI3 layers[J]. Chemistry Letters, 2014, 43(5):711-714. [28] RONG Y G, TANG Z J, ZHAO Y F, et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells[J]. Nanoscale, 2015, 7(24):10595-10599. [29] KIM H B, CHOI H, JEONG J, et al. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells[J]. Nanoscale, 2014, 6(12):6679-6683. [30] WU Y Z, YANG X D, CHEN W, et al. Perovskite solar cells with 18.21% effciency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy, 2016, 7:16148. [31] SHEN D H, YU X, CAI X, et al. Understanding the solvent-assisted crystallization mechanism in herent in efficient organic-inorganic halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(48):20454-20461. [32] CHEN J Z, XIONG Y L, RONG Y G, et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells[J]. Nano Energy, 2016, 27:130-137. [33] TSAI C M, WU G W, NARRA S, et al. Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%[J]. Journal of Materials Chemistry A, 2017, 5(2):739-747. [34] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead (Ⅱ) iodide[J]. Journal of the American Chemical Society, 2015, 137(27):8696-8699. [35] WILLIAMS S T, ZUO F, CHUEH C C, et al. Role of chloride in the morphological evolution of organo-lead halide perovskite thin films[J]. ACS Nano, 2014, 8(10):10640-10654. [36] WANG D, LIU Z H, ZHOU Z M, et al. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixed-lead-halide precursors[J]. Chemistry of Materials, 2014, 26(24):7145-7150. [37] ZHANG W, SALIBA M, MOORE D T, et al. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells[J]. Nature Communications, 2015, 6:6142. [38] SINGH T, MIYASAKA T. High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions[J]. Chemical Communications, 2016, 52(26):4784-4787. [39] HUANG C, FU N Q, LIU F Y, et al. Highly efficient perovskite solar cells with precursor composition-dependent morphology[J]. Solar Energy Materials and Solar Cells, 2016, 145:231-237. [40] ZHAO Y X, ZHU K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:Structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(18):9412-9418. [41] ZHAO Y X, KAI Z. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition[J]. Journal of the American Chemical Society, 2014, 136(35):12241-12244. [42] ZUO C T, DING L M. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive[J]. Nanoscale, 2014, 6(17):9935-9938. [43] WANG Z W, ZHOU Y Y, PANG S P, et al. Additive-modulated evolution of CH(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells[J]. Chemistry of Materials, 2015, 27(20):7149-7155. [44] HEO J H, SONG D H, HAN H J, et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J]. Advanced Materials, 2015, 27(22):3424-3430. [45] KIM J, YUN J S, WEN X M, et al. Nucleation and growth control of HC(NH2)2PbI3 for planar perovskite solar cell[J]. The Journal of Physical Chemistry C, 2016, 120(20):11262-11267. [46] ZHANG W, PATHAK S, SAKAI N, et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells[J]. Nature Communications, 2015, 6:10030. [47] HUANG J, WANG M Q, DING L, et al. Hydrobromic acid assisted crystallization of MAPbI3-xClx for enhanced power conversion efficiency in perovskite solar cells[J]. RSC Advances, 2016, 6(61):55720-55725. [48] MEI A Y, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science,2014, 345(6194):295-298. [49] LIANG P W, LIAO C Y, CHUEH C C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced Materials, 2014, 26(22):3748-3754. [50] LI X, DAR M I, YI C Y, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acidω-ammonium chlorides[J]. Nature Chemistry, 2015, 7(9):703-711. [51] ZHAO Y C, WEI J, LI H, et al. A polymer scaffold for self-healing perovskite solar cells[J]. Nature Communications, 2016, 7:10228. [52] YANG S, WANG Y, LIU P, et al. Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nature Energy, 2016, 1:15016. [53] KE W J, FANG G J, WAN J W, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells[J]. Nature Communications, 2015, 6:6700. [54] JENG J Y, CHIANG Y F, LEE M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27):3727-3732. [55] JENG J Y, CHEN K C, CHIANG T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2014, 26(24):4107-4113. [56] SALIBA M, TAN K W, SAI H, et al. Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic-inorganic lead trihalide perovskites[J]. The Journal of Physical Chemistry C, 2014, 118(30):17171-17177. [57] BURSCHKA J, PELLET N, MOONS J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319. [58] LIU T H, HU Q, WU J, et al. Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells[J]. Advanced Energy Materials, 2016, 6(3):1501890. [59] WU Y Z, ISLAM A, YANG X D, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7(9):2934-2938. [60] SHI J J, LUO Y H, WEI H Y, et al. Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(12):9711-9718. [61] BI D Q, El-ZOHRY A M, HAGFELDT A, et al. Improved morphology control using a modified two-step method for efficient perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(21):18751-18757. [62] DHARANI S, DEWI H A, PRABHAKAR R R, et al. Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells[J]. Nanoscale, 2014, 6(22):13854-13860. [63] XIAO Z G, BI C, SHAO Y C, et al. Efficient high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy & Environmental Science, 2014, 7(8):2619-2623. [64] IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nature Nanotechnology, 2014, 9(11):927-932. [65] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15):9019-9038. [66] ZHOU Y, YANG M, VASILIEV A L, et al. Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17):9249-9256. [67] ZHANG T Y, YANG M J, ZHAO Y X, et al. Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion[J]. Nano Letters, 2015, 15(6):3959-3963. [68] LIU J, SHIRAI Y, YANG X D, et al. High-quality mixedorganic-cation perovskites from a phase-pure non-stoichiometric intermediate (FAI)1-x-PbI2 for solar cells[J]. Advanced Materials, 2015, 27(33):4918-4923. [69] LI W Z, FAN J D, LI J W, et al. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%[J]. The Journal of the American Chemical Society, 2015, 137(32):10399-10405. [70] ZHU L F, SHI J J, LV S T, et al. Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells[J]. Nano Energy, 2015, 15:540-548. [71] LIU W B, LI L, CHEN M, et al. Nucleation mechanism of CH3NH3PbI3 with two-step method for rational design of high performance perovskite solar cells[J]. Journal of Alloys and Compounds, 2017, 697:374-379. [72] SHI J, WEI H, LV S T, et al. Control of charge transport in the perovskite CH3NH3PbI3 thin film[J]. Chemphyschem:A European Journal of Chemical Physics and Physical Chemistry, 2015, 16(4):842-847. [73] DONG Q, YUAN Y, SHAO Y, et al. Abnormal crystal growth in CH3NH3PbI3-xClx using a multi-cycle solution coating process[J]. Energy & Environmental Science, 2015, 8(8):2464-2470. [74] HUANG J S, SHAO Y C, DONG Q F. Organometal trihalide perovskite single crystals:a next wave of materials for 25% efficiency photovoltaics and applications beyond?[J]. Journal of Physical Chemistry Letters, 2015, 6(16):3218-3227. [75] XIAO Z, DONG Q, BI C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J]. Advanced Materials, 2014, 26(37):6503-6509. [76] BI C, WANG Q, SHAO Y C, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nature Communications, 2015, 6:7747. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[3] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[4] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[5] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[6] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[7] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[8] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[9] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[10] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[11] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[12] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[13] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[14] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[15] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 468
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |